
Multi-Resolution Model Transmission in Distributed Virtual EnvironmentsJimmy H.P. Chimy Rynson W.H. Lau� Antonio Si! Hong Va LeongyDanny To� Mark Greenz Miu Ling Lamyy Department of Computing, The Hong Kong Polytechnic University, Hong Kong� Department of Computer Science, City University of Hong Kong, Hong Kong! Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303, U.S.A.z Department of Computer Science, University of Alberta, Edmonton, Alberta, CanadaAbstractDistributed virtual environments allow users at di�erent ge-ographical locations to share and interact within a commonvirtual environment via a local network or through the In-ternet. To deliver a good performance for such applications,we need to address several issues in di�erent research dis-ciplines. First, we must be able to model virtual objectse�ectively. The recently developed multi-resolution tech-niques for object modeling are of great value here, sincethey are capable of simplifying the object models and there-fore reducing the time to render them. This may greatlyreduce the demand for rendering performance on the clientmachines. Second, with the constraint of the limited band-width of the Internet, we need to reduce the response timeby reducing the amount of data requested over the network.Caching of suitable object models of high a�nity will re-duce the amount of data requested over the network for afaster response time. Prefetching object models by predict-ing those which are likely to be used in the near future anddownloading them in advance will lead to a similar improve-ment. Third, the Internet often su�ers from disconnection.A caching mechanism that allows objects to be cached withat least their minimum resolutions will be useful to provideat least a coarse view of the objects to the viewer for im-proved visual perception. In this paper, we describe ourimplementation of a distributed walkthrough system. Twotechniques are fundamental to our system, amulti-resolutioncaching mechanism and a set of object prefetching mecha-nisms. Towards the end of the paper, we quantify the per-formance of the proposed mechanisms.1 IntroductionIn a virtual walkthrough application, a user could explore aspeci�c place of interest without having to travel physically.The place of interest is modeled as a virtual environment,containing a vast number of virtual objects. Sample appli-cations of this sort include virtual museum, virtual library,virtual university, etc. [19]. Employing a standard client-server architecture, information of virtual objects, including

their locations, sizes, orientations, and shapes, will be main-tained in a central database server. When a viewer (user)walks through a virtual environment, information of the vir-tual objects located within a visible distance from the viewerwill be conveyed to the client machine of the viewer for ren-dering. As the viewer moves within the virtual environ-ment, the relative locations and orientations of the objectsmay change with respect to the position of the viewer. Suchchanges of information should be re
ected into the renderedimages in a timely fashion. In general, the virtual objectscould be dynamic as well, changing their locations and ori-entations within the virtual environment. However, in thispaper, we only focus on virtual environments where objectsare static. The goal is to provide a good performance ofthe application, both in terms of responsiveness and resolu-tion, under the existing constraints of relatively low Internetbandwidth and the large memory demand of virtual objects.We are addressing several issues in this application. First,virtual objects must be modeled in a compact form so as toreduce the amount of storage space needed and the amountof time required to transfer the objects from the server toa client. A compact modeling of virtual objects also hasthe bene�t of fast retrieval from secondary storage, both atthe server and at a client. However, over-compact modelingof virtual objects will increase the overhead in compress-ing and decompressing the objects. The recently developedmulti-resolution methods for object modeling [13, 16] couldbe employed here. The techniques allow progressive trans-mission of objects with only minimal overheads.Second, with the limited bandwidth of the Internet, weneed to reduce the amount of data requested over the net-work for faster response time. This can be achieved bycaching and prefetching mechanisms. A caching mechanismallows a client to utilize its memory and local storage tocache currently visible objects that are likely to be visiblein the near future [11]. A prefetching mechanism allowsa client to predict objects that will be visible in the futureand obtain the objects in advance to improve response time.A good caching mechanism should retain objects with higha�nity while a good prefetching mechanism should predictthose objects which will most likely be used.Third, the Internet often su�ers from various degrees ofdisconnection. The local storage cache of a client can beused to provide partial information to support a certain de-gree of disconnected operation. For example, a viewer maystill be able to see a coarse resolution of objects in the vir-tual environment if the minimal approximated models of theobjects are cached. Even if only the coordinates of the vir-tual objects are cached, a viewer could still be aware of the

In Proceedings of ACM Symposium on Virtual Reality Software and Technology, pp. 25-34, Nov. 1998.

existence of the objects.In this paper, we describe our implementation of a dis-tributed walkthrough system. Two techniques are funda-mental to our system, a caching technique called the multi-resolution caching mechanism and a prefetching techniquecomposing of a set of object prefetching mechanisms. Therest of the paper is organized as follows. Section 2 presentsa survey on relevant research. Section 3 presents the multi-resolution modeling technique, and Section 4 presents themulti-resolution caching and prefetching mechanisms. InSection 5, we discuss the implementation of our experimen-tal prototype system. We quantify the performance of ourcaching and prefetching mechanisms with several experi-ments via simulation as well as on the prototype in Sec-tion 6. Finally, we conclude our paper with a discussion onpossible future work.2 Related WorkSeveral approaches have been proposed to distribute datafrom the server to the clients in distributed virtual real-ity applications. Most existing systems, such as DIVE [3],SIMNET [1], and VLNET [22], use a complete replicationapproach to distribute all geometry data to the clients be-fore the start of the application. This approach assumesthe use of a reliable high speed network and is therefore notsuitable for use in the Internet environment. If the geom-etry database is large, distributing it via the Internet mayresult in a high pre-loading time. Another approach to dis-tribute geometry data is to send them on demand to theclients [10, 23, 27] during the application. This approachemploys a standard client-server architecture, in which acentral server maintains a geometry database of the virtualenvironment and distributes data to clients when requested.Client-server architecture is very common in the Internet.In a client-server database environment, to combat thenetwork transmission latency, a multi-level caching mecha-nism could be established by caching database objects fromthe server in a client's local memory and/or local storage.A storage cache has an advantage of persistence. When dis-connected from the server, a client can still operate on thedatabase objects in its local storage.In a conventional client-server database environment, dataobjects are usually transferred from the database server toa client on a per-page basis [2, 11]. This is primarily be-cause the server's storage is also page-based. The overheadfor transmitting one item or a page is similar. In a virtualwalkthrough environment, virtual objects are representedusing object models and are usually very complex and largein size, occupying possibly multiple pages. The overheadrequired to transfer an object model (or simply object) inits entirety via the narrow bandwidth Internet is very high.Furthermore, we might not always need to render an ob-ject at its full resolution (see Section 4). Hence, there willbe situations that we need to transfer less than a page ofinformation and there also exist situations that we need totransfer more than a page of information. A more dynamicgranularity for caching is therefore needed in a virtual walk-through environment.If a client can provide unbounded disk storage and waitfor a possibly very long pre-loading time, we could trans-mit all virtual objects in the environment to the client be-fore starting the walkthrough, as in the complete replicationapproach [1, 3, 22]. However, a more realistic situation isthat the available storage for caching and the available pre-loading time are limited [20]. A cache replacement policy

must be employed to retain only frequently accessed ob-jects. Finally, to reduce the access and rendering latency,it is also bene�cial to prefetch potentially visible objects inthe client, if disk space is available.2.1 Multi-Resolution ModelingIn a virtual walkthrough application, rendering a complexobject at a client is expensive. From the perspective of aviewer in the virtual environment, distant objects appearsmaller than nearby objects after projection. Most of the de-tails of distant objects are actually not visible to the viewer.Hence, it is only necessary to represent an object at theresolution just high enough for the given viewing distance.This could reduce not only the rendering time, but also thetransmission delay and the storage required at a client tohold the objects. Here, we employ multi-resolution mod-eling techniques to study the e�ect of caching objects in aclient at various granularities. In brief, our multi-resolutionmechanism caches and prefetches a nearby object at a higherresolution and a distant object at a lower one.There are many methods developed for generating multi-resolution models [8, 14, 24]. However, most of them focuson the accuracy of the simpli�cation, and hence, are slow.A popular method to overcome the performance limitationis called the discrete multi-resolution method. This methodpre-generates a few key models of an object at di�erent res-olutions. During run-time, the object's distance from theviewer determines which model to use for rendering [7]. Al-though this method is fast and simple, it has one majorlimitation in our context. Since all the key models are in-dependent of each other, the overall amount of informationneeded to represent a particular object is increased and isdependent on the total number of key models used. In a dis-tributed environment, this will increase the network tra�cand hence reduce the availability of objects.A method referred to as progressive meshes was recentlyproposed for progressive transmission of multi-resolution ob-ject models [13]. The method is based on two operators,edge collapse for reducing model resolution, and edge splitfor increasing model resolution. Each object is modeled asan ordered list. The list begins with the minimal resolu-tion model of the object, referred to as the base mesh. Eachsubsequent record in the list, referred to as the progressiverecord, stores information of an edge split. If we apply theinformation stored in each of the records to the object in or-der, the object will gradually increase in resolution until itreaches the maximum resolution, when all the records in thelist are exhausted. Conversely, the method may begin withthe highest resolution model of the object; if we apply theinformation stored in each of the records in reverse order,which is equivalent to an edge collapse operation, the ob-ject will gradually decrease in resolution until it reaches theminimum resolution. We have recently developed a similarmethod [15, 16].2.2 Replacement and Prefetching TechniquesIn [9], various cache replacement policies have been pro-posed and their suitabilities in a conventional database sys-tem have been examined. These policies are all page-based,due to the logical mapping made by the database or oper-ating system to the physical storage. In general, the per-formance of individual replacement policies is sensitive tothe characteristics of queries initiated and the applicationenvironment. A general conclusion on the performance ofthe replacement policies cannot be made. In practice, the

replacement policy is often approximated by the Least Re-cently Used (LRU) policy in conventional caching [2, 11, 26].In [25], it was shown that LRU policy is not appropriate in acontext where the objects accessed by a client might changeover time. Rather, the semantics of data access is moreimportant in de�ning the replacement policy. We, there-fore, need to develop a more appropriate replacement policybased on the semantics of accesses in a walkthrough envi-ronment. It was also noticed in [4] that prefetching couldbe very bene�cial in improving the performance of databaseapplications if the prefetching is performed intelligently.3 Multi-Resolution Modeling Technique3.1 Object ScopeIn our method, each virtual object, o, is stored in the databaseserver at its maximum resolution, R̂o, in the form of a pro-gressive mesh. Since the multi-resolution method we usehere is based on edge collapse, the maximum resolution R̂oof o is actually re
ecting a count of the total number ofedges which can be collapsed from its maximum resolution.Each object will also have a base mesh at its minimum res-olution, �Ro. We say that the base mesh �Ro of o representso at resolution level 0, denoted as �Lo, which has a value of0. Each progressive record will increase the resolution levelby 1. Therefore, the maximum resolution R̂o represents oat the highest resolution level, denoted as L̂o, when all pro-gressive records are applied.To minimize the amount of data needed to be handled,most existing methods consider only the area of interest(AOI) of the viewer [10, 18, 23]. If an object falls insidethe AOI of the viewer, the object is considered visible tothe viewer. Otherwise, the object is considered too far tobe visible. Although these methods can quickly eliminateinvisible objects, they do not consider the sizes of the ob-jects. Hence, a mountain located just outside the AOI of theviewer may still be visible to the viewer, but is consideredas invisible, while a tiny object such as a book located justinside the AOI of the viewer is unlikely to be visible to theviewer, but is considered for visibility. The former situationmay result in a sudden appearance of a large object, and thelatter situation may result in a waste of processing time.To overcome this limitation, we generalize the AOI con-cept to both viewers and objects. We call them the viewerscope and the object scope. We denote the viewer scope forviewer, V , by
V and the object scope for object, o, by
o.A viewer scope is similar to AOI. It indicates the depth ofsight of the viewer, i.e., how far the viewer can see. A viewerwith a good eye-sight or equipped with a special device maybe able to see objects that are further away, and thereforemay be assigned with a larger scope. A short-sighted viewermay only be able to see nearby objects, and therefore maybe assigned with a smaller scope. An object scope indicateshow far the object can be seen. A large object has a largerscope and a small object has a smaller scope. An objectmay be visible to a particular viewer only when its scopeoverlaps with the viewer scope. When the two scopes over-lap, the distance between the object and the viewer and theangle of the object from the viewer's viewing direction canbe used to determine the optimal resolution of the object.Obviously, a viewer may also be considered as an objectand assigned with an object scope in addition to the viewerscope. This object scope of the viewer will de�ne how farthe viewer can be seen by another viewer within the samevirtual environment. This approach is somewhat similar to

the one proposed by [12].In our implementation, we de�ne a scope as a circularregion. Therefore, each scope (object or viewer) is charac-terized by a radius. We denote the radius of the object scopefor object o, i.e.,
o, as r
o while the radius of the viewerscope for viewer V , i.e.,
V , as r
V .The interaction between a viewer and the virtual envi-ronment is illustrated in Figure 1. In addition to the viewerscope, each viewer, V , is also associated with a viewing di-rection, ~vV , and a location, locV . The viewing directionde�nes the line of sight of the viewer. Given the locationof a viewer, all virtual objects whose object scopes intersectwith the viewer scope are considered as visible to the viewer.Even though some objects may be located at the back of theviewer, the viewer may be able to see them within a veryshort time simply by turning around. As will be describedlater, these objects have the highest priority to be cached inthe client's memory and we refer them as cachable objects.Each viewer also has a viewing angle. This viewing anglede�nes the viewer's viewing region, which is a sub-space ofthe viewer scope. All cachable objects within the viewingregion are considered for rendering, and we refer them asrenderable objects. Each renderable object will be renderedat its optimal resolution. We denote the optimal resolutionof an object, o, by Ro and its resolution level by Lo. Thisoptimal resolution of an object is determined according tothe object distance from the viewer and the angular distanceof the object from the viewer's viewing direction, i.e., line ofsight. If the object is rendered at a resolution higher thanthis optimal resolution, the additional details will not beeasily noticeable to the viewer. By contrast, if the object isrendered at a resolution lower than this optimal resolution,the image quality of the rendered object as perceived by theviewer drops rapidly [5]. Such a perceived image quality iscalled the visual perception.
vV

viewing
 angle

viewer

viewing region

object

objectobject scope
object scope

viewer scopeFigure 1: Objects-viewer interaction in a virtualenvironment.3.2 The Optimal Resolution of an Object ModelThe optimal resolution of an object model can be deter-mined according to the visual importance of the object to aviewer. In [17], we have identi�ed several factors that maya�ect the visual importance of an object. Here, we only con-sider two of those factors, which are relevant to the contexthere. The �rst one is the distance factor. If an object is faraway from the viewer, the object may be considered as vi-sually less important. The second factor is the line of sight.Studies have shown that when an object is located outsidethe line of sight, the viewer is unable to perceive much detailfrom the object [21, 28]. Degradation of peripheral visualdetail can improve rendering performance and reduce per-ceptual impact. Here, we assume that the viewer's line ofsight is at the center of the screen.

Figure 2 depicts the visual importance of an object, o,to a viewer, V . In the �gure, Do;V indicates the currentdistance of the object from the viewer, while Do;V;max isthe distance between the object and the viewer when theirscopes just overlap. Hereafter, we will consider in the con-text of viewer V and the subscript V can be dropped if thecontext is clear. Since a scope is de�ned as a circular region,Do;max is equal to the sum of the radii of the viewer scopeand the object scope. The angular distance of the objectfrom the viewer's line of sight, i.e., its viewing direction, ~vV ,is denoted as �o;V or simply �o (�� � �o � �). The visualimportance of o to a viewer can be de�ned with the followingformula:Io = (Do;max �DoDo;max)2 e�Koj�oj; 0 � Do � Do;maxwhere Ko is a constant for adjusting the decrement rate ofobject o due to the increase in �o. In our implementation, wedo not want the line of sight factor to dominate the distancefactor. Hence, we use a small value of Ko.
Do

Do,max

Vv

viewer scope

θo

viewer V

object scope just
 overlaps with
 viewer scope

object o
object scope

object scope

object oFigure 2: Visual importance of an object to aviewer in a virtual environment.To incorporate this idea into the progressive multi-resolu-tion method described in [13], the object importance, Io,is used to determine the optimal resolution of the objectmodel. During the walkthrough, we continuously determinethose cachable objects. When the scope of an object, o,touches the perimeter of the viewer scope, the optimal reso-lution level of the object will be equal to its base mesh, whichprovides the minimal resolution of the object. As the objectmoves closer to the viewer or to the viewer's line of sight,its optimal resolution increases. The object model of eachcachable object at its optimal resolution will be transmittedto the client if it is not already cached in the local storage.When transmitting the models from the server to a client,models of objects within the viewing region are transmitted�rst, followed by the transmission of those outside the view-ing region. The received models will be cached in the client'slocal storage. If there is not enough cache storage, we willthrow away some progressive records of some object modelsthat are not likely accessed in the near future in order toaccommodate the new models, i.e., we try to decrease theresolution of some existing cached objects (see Section 4).We also attempt to further improve the performance ofthe walkthrough application by having the server prefetchobjects which will most probably be accessed in the futureto the client. This is achieved by having the server predictthe next location and viewing direction of the viewer basedon his/her past movement pro�le. Models of objects whosescopes overlap with the viewer scope at the predicted loca-

tion will be transmitted at their optimal resolutions to theclient as well (see Section 4).Our method has several advantages over previous ap-proaches. First, in [23], discrete multi-resolution method isused for model transmission. Redundant information willhave to be sent through the network, since multiple modelsof the same object at di�erent resolutions need to be trans-mitted. Our method applies the progressive mesh techniquefor model transmission. No redundant information needsto be sent across the network. Second, the importance ofan object is calculated based not only on the distance of theobject from the viewer, but also on the size of the object con-cerned and the resolution of the viewing device. Third, ourcaching mechanism di�ers from conventional caching mech-anisms [2, 11, 26] in that objects could be cached at mul-tiple degree of granularity. Replacement is also based onobject access patterns rather than conventional LRU policy.Finally, the performance of the walkthrough application isfurther improved by predicting the future movement of theviewer and prefetching objects in advance.4 Multi-Resolution Caching MechanismMulti-resolution modeling allows the database server to trans-mit an object model at the optimal resolution for rendering.This could save the scarce Internet bandwidth from trans-mitting details of an object too small to be visible to theviewer. To further reduce the dependency on the Internetto reduce transmission delay and to support disconnectedoperation, a caching and prefetching mechanism is neededto retain objects of high a�nity and predict those that willmost likely be accessed in the near future.4.1 The Cache ModelWhen a viewer, V , moves within the virtual environment,the client machine, C, will transmit the current viewingdirection, ~vV , and the current location, locV , of V to theserver. This is a query to the database server for all cachableobjects. Concurrently, C will identify the cachable objectsamong the cached objects stored in its local storage cachebased on the list supplied by the server.Each cached object, o, is associated with a resolution,R�o, indicating the current highest possible resolution of themodel available for rendering. This resolution level dependson the number of progressive records, L�o � L̂o, cached inC. C would then submit an existent list to the server, i.e.,a list of ho, L�oi pairs about those cachable objects cachedin C's storage. Cachable objects with L�o � Lo do not needto be transmitted as C can render them at the optimal res-olution, Ro, from locally cached data. On the other hand,those cachable objects not cached in C or those not at therequired optimal resolution Lo will have to be transmittedto C. A result list in the form of ho, progressive meshi pair istransmitted. Such a progressive mesh only contains enoughprogressive records to de�ne the optimal resolution of theobject.Upon receiving the result list from the server, C mightcache the objects in its local storage. If the storage is ex-hausted, a replacement policy identi�es the victim objects tobe discarded. For each object, o, an access score indicatingthe prediction of its future access probability is determined.The higher the access score is, the higher is the probabil-ity that o will be accessed again soon. If an object has ascore higher than the lowest score of some currently cachedobjects, it will be cached.

4.2 Multi-Resolution Replacement MechanismWe employ the Most Required Movement (MRM) replace-ment technique in de�ning the access score for each object.It is based on the observation that the farther an object isfrom the viewer, the lower the resolution it can be renderedsince the longer it will take for the viewer to move to viewthe object in greater detail. Consequently, its value of beingcached in the storage is lower. Similarly, the larger the anglebetween an object and the viewer's line of sight is, the lowerthe required resolution is since the longer it will take for aclient to rotate to view the object directly in front. Its valueof being cached in the storage is also lower. Preliminaryexperiments have shown that such a replacement schemeoutperforms traditional LRU replacement scheme [6]. Inthis paper, we investigate the e�ectiveness of MRM using areal prototype, taking into account of the viewer and objectscope information.There can be di�erent formula to calculate the accessscore, So;V , for an object, o, with respect to a viewer, V .Since we would like to have as few parameters to be adjustedas possible, we have developed the following formula withonly a single adjustable parameter ! (0 � ! � 1). Usingthe notations in Figure 2, So;V is de�ned as:So;V = !(1� Do � r
or
V) + (1� !)(1� j�oj�):When the object with the lowest access score is selectedfor replacement, we will not remove the whole object fromthe storage cache immediately. Rather, its extra resolutiondetail will be reduced to its optimal resolution by remov-ing all the extra progressive records. This will make roomfor the incoming objects. If there is still not enough roomto accommodate the new objects, the object with the nextlowest access score will be selected for replacement and thisprocess will be iterated.When there is still not enough room to accommodate thenew objects even after all cached objects have been reducedto their optimal resolutions, all progressive records of theobject with the lowest access score will be removed from thestorage cache, leaving only the base mesh of the object atits minimum resolution. Again, this process will be iterated.Finally, the base mesh of the object with the lowest accessscore will be removed if there is still not enough room. Thisprocess will be iterated until enough room is allocated forall new objects.This multi-resolution replacement scheme tries its bestto keep a coarse resolution of an object in a client's storage.This provides a viewer with a much better visual percep-tion since all or most of the cachable objects could be seeninstantaneously, even though they may only be at a low res-olution.4.3 Prefetching MechanismTo enable prefetching, the server maintains a separate pro�lefor each viewer V , containing the set of historical movementvectors, f~m1; ~m2; : : : ; ~mn�1g. Each vector is calculated fromthe corresponding viewer's location and orientation, con-taining a moving direction and a moving distance. WhenV moves to a new location, locn, with a new orientation,the nth movement vector, ~vn, is calculated. The server at-tempts to predict the n+1th movement vector, ~mn+1, of Vand transmits objects that would be cachable if V were atlocn+1, in addition to the cachable objects at locn. This

would save future requests to the server if the prefetchedobjects are indeed required by the client.We propose three di�erent schemes to predict the next lo-cation of the viewer: mean, window, and exponential weightedmoving average (EWMA). The semantics of these schemes aredepicted in Figure 3.
(a)

previous movement
vectors

 estimated
movement vector

mn-2

mn-1

mn
mn+1

(b) (c)

mn-2

mn-1

mn

mn+1

mn-2

mn-1

mn

mn+1Figure 3: Prediction of next moving direction:(a) mean, (b) window, and (c) EWMA.In the mean scheme, the next movement vector, ~mn+1, ispredicted as the average of the previous nmovement vectors,as depicted in Figure 3(a) with three movement vectors. Inthe window scheme, each viewer is associated with a windowof size W , holding the previous W movement vectors. Thenext movement vector is predicted as the average of theW most recent vectors. This is indicated in Figure 3(b),showing a window of size W = 2.A problem for the window scheme is the amount of stor-age needed in maintaining the movement vectors within thewindows. To avoid the need of a moving window, and toadapt quickly to changes in viewer moving patterns, ourEWMA scheme assigns a weight to each previous movementvector so that recent vectors have higher weights and theweights tail o� as the vectors become aged. A parameteris the exponentially decreasing weight, �. The most recentvector will receive a weight of 1; the previous vector willreceive a weight of �; the next previous one will receive aweight of �2, and so on. This idea is depicted in Figure 3(c),indicating the predicted moving direction.EWMA has been shown to be quite e�ective in predictingaccess probabilities of data items in database applications byadapting rather quickly to changes of access patterns [25].However, it might not perform as satisfactory in this newcontext of predicting the next viewer location. This is be-cause the access probability to a data item is bounded be-tween 0 and 1. EWMA is trying to incorporate the e�ectof the change into the new estimate and the estimation er-ror would normally not diverge. In this new context here,we are using EWMA to predict a vector, whose directionis an angle with an unbounded scope, i.e., the angle canincrease inde�nitely, for example, through continuous rota-tion in a circle. Thus, EWMA may not be able to cope withthe \non-stationary" changes. We need to explicitly cor-rect the prediction with adjustment from residuals or errorpredictions.Let us denote the nth movement vector be ~mn and thepredicted n+ 1th movement vector be m̂n+1. The residualin each predication is ~en = m̂n� ~mn. We consider the anglebetween m̂n and ~mn, denoted as �n = arg(m̂n)� arg(~mn),

Figure 4: Architecture of the prototype.where arg(~m) is the argument of the vector ~m in a complexplane. ~mn can be predicted by rotating m̂n through an angleof��n, i.e., a multiplication by e�{�n . Since we do not reallyknow �n+1 when we predict m̂n+1, we must try to predict�n+1 as well. There can be di�erent ways of predicting�n+1 from the previous values of �i, namely, mean, windowand EWMA. Again, we propose to use EWMA to computethe prediction of �i at each step as we compute êi. Thus,�̂n+1 = ��̂n + (1� �)�n, and ~mn+1 = m̂n+1e�{�̂n+1 .5 ImplementationWe have developed a prototype of the proposed distributedwalkthrough system. The prototype is mainly implementedusing Java, due to its platform independence nature, ex-cept for the Display Driver. The Display Driver is imple-mented using OpenInventor, which would utilize the under-lying graphics capability of the client, if available, for betterperformance. This is also because when we started our im-plementation work of the system, Java3D was not available.5.1 ArchitectureAs mentioned previously, our distributed walkthrough sys-tem is based on a client-server model. The architecture ofour prototype is therefore divided into two main parts, theClient System and the Server System. The Client Systemconsists of 4 main components as shown in Figure 4. Themajor functions of the components are as follows:� Client Manager: It serves as the coordinator of allother components at the Client System. All viewerinputs, such as translation or rotation, are directed toand handled by the Client Manager.� Cache Agent: It controls all the local caches, includ-ing the memory cache and/or the storage cache at theClient System. Whenever the client receives data fromthe server, the data would be cached via the CacheAgent. The agent will perform cache cleanup at theunderlying cache(s) when necessary. The Cache Agentalso maintains a Score Table, containing the accessscore (see Section 4) of each object in the local cache.� Network Agent: It handles all the communications be-tween the client and the server, and maintains the con-nection between the client and the server once a con-nection has been established between them. It alsohandles all the object requests. The process is imple-mented as a separate thread under the Client Managerin order to reduce the response time.

� Display Driver: It accepts input from the viewer andgenerate output images to be displayed on the displayscreen.The Server System also consists of 4 main components.Their major functions are as follows:� Server Manager: It serves as the coordinator of allother components at the server side and handles allclients' requests.� Database Agent: It maintains the database of the vir-tual environment, and sends object models in the formof progressive meshes or progressive records to a client,upon receiving the request for objects from the client.To reduce the overhead incurred for determining theset of cachable objects within a viewer scope, the Data-base Agent maintains a Database Index Table. Thetable is indexed based on the virtual coordinate anda radius, which identi�es the set of cachable objectswithin the radius, centered at the coordinate.� PrefetchingAgent: It prefetches objects to clients basedon some historical movement vectors of the client inthe form of user pro�les. These movement vectors areused to predict the next position of the client. A num-ber of prefetching methods are implemented includingmean, window, and EWMA.� Network Agent: It handles all the communications be-tween a client and the server, and maintains the con-nection between them once a connection has been es-tablished. It also handles all the object requests bythe client.Figure 5 illustrates sample sessions with the prototype.Figure 5a shows a scene in the virtual environment. Fig-ure 5b illustrates the structure of the meshes for rendering.Note that objects farther away are represented by mesheswith lower resolution. Figures 5c and 5d represent the sceneand mesh structure when the viewer moves forward, with anincrease in the resolution of the cow and the trees.5.2 Client-Server InteractionA connection-oriented protocol is used in the prototype. Theconnection between the client and the server would be main-tained once it has been established to prevent the extraoverhead incurred in further communications between theclient and the server. For connectionless protocol such asHTTP, a connection between the client and server has to beestablished every time before any data transmission. Thiswould increase the overhead and thus the response time tothe viewer.When a client wants to connect to a server, the clientsends a NEW command, specifying the size of its scope andthe viewing angle. If the server accepts the client's connec-tion, the server replies with the assigned ClientID and otherparameters of the virtual environment to the client. As theviewer moves or rotates within the virtual environment, theclient sends an ACK command to the server, specifying theclient's updated location and viewing direction. The serverreplies with an object ID list, specifying all cachable objectsthat are within the new scope of the client and the optimalresolution required for each object. If prefetching is used,the IDs of the predicted objects would also be included inthe list. Upon receiving the object ID list, the client looksup its cache via the Cache Agent to identify the cached and

a b c dFigure 5: Sample sessions with prototype.uncached information. An REQ command will be sent tothe server, requesting progressive records and/or progres-sive meshes of the cachable objects from the server. Whenthe client stops the walkthrough, a DONE command is sentto the server, closing the connection.5.3 Progressive Mesh TransmissionTo transmit a progressive mesh to the client, the base meshis transmitted �rst as a single unit. The client reconstructsthe minimal resolution model of the object as it receives thebase mesh. Each subsequent progressive record is transmit-ted in order. Each record stores information for splitting anedge of the object model, thereby increasing the resolution ofthe object model by a small amount. As an edge is insertedor split in a local mesh, vertices might need to be divided aswell. This idea is illustrated in Figure 6. In Figure 6, as anedge identi�ed by the two vertices, Vparent and Vchild, is in-serted into a local mesh, some of the immediate neighboringvertices of Vparent are divided as well. The new vertex Vchildbecomes an immediate neighboring vertex of Vparent whilesome of the former neighbors of Vparent become the immedi-ate neighbors of Vchild. To reduce the amount of informationneeded to be maintained in each progressive record for sucha vertex division, a linked list for each vertex of an objectmodel is maintained at the client. The linked list points toall immediate neighboring vertices for each vertex, orderedin a clockwise direction.
edge split

Vparent

V left

V right Vparent

V left

V right

V child

T left
TrightFigure 6: A progressive record stores informationfor an edge split.The progressive record for the edge split operation shownin Figure 6 stores the hx; y; zi position of Vchild, i.e., thevertex to be inserted, and the ID of the parent vertex, i.e.,Vparent. Vparent will then join with Vchild to form the in-serted edge. We also need to transmit the IDs of vertices,Vleft and Vright. They help to identify the locations wherethe two new triangles are to be inserted to. The two trianglesare de�ned as Tleft = hVparent; Vchild; Vlefti and Tright =hVchild; Vparent; Vrighti. The two vertices also help to di-vide all the immediate neighboring vertices into two groups.

The data structure for our implementation of the progressivemesh is shown in Figure 7.
Order of transmission

Base Mesh Edge Split 0 Edge Split 1 Edge Split n-1 Edge Split n
. . .

ID of Vchild X Y Z ID of V parent ID of V left ID of V rightsFigure 7: The data structure of the progressivemesh for transmission.6 Results and DiscussionsWe have conducted some preliminary experiments to quan-tify the performance of MRM replacement scheme and thee�ectiveness of various prefetching schemes via simulationas well as on the prototype. The purpose of simulation is aproof of concept, allowing us to experiment the behavior ofthe mechanisms under diverse situations easily. The proto-type provides a study under a real situation. We will �rstpresent a simulated experiment to illustrate the general be-havior of the caching and prefetching schemes, followed by amore detail analysis of the performance of the mechanismsusing our prototype.We characterize the performance of the caching and re-placement schemes with two metrics: cache hit ratio and vi-sual perception. Cache hit ratio measures the percentage ofbytes of the renderable objects, i.e., those within the view-ing region, that could be retrieved from the local storagecache of the client. A high hit ratio is important to reducereliance on network and to provide service during discon-nection. Visual perception measures the relative degree (inpercentage) of image quality experienced by a viewer justafter the move. The visual perception of a cached render-able object, o, is modeled as a cubic function: 1�(Bo�B�oBo)3,where Bo is the expected size of object o at its optimal res-olution and B�o is the size of the object currently cached.This de�nition of visual perception is based on the fact thatwhen a viewer makes a move in the virtual environment,s/he would experience a high visual perception if all ren-derable objects could be seen instantaneously (from cache),even at a coarse resolution. By contrast, a viewer wouldexperience a low perception if s/he needs to wait for a longtime before all renderable objects could be observed. A vi-sual perception of 100% is assumed when the the cachedmodel could provide the optimal resolution.

6.1 Experimental EnvironmentThe same set of parameters are used in our experimentsunder simulation and prototype, as listed in Table 1. In ourexperimental environment, there are n virtual objects in thedatabase server. We focus on a single server and a singleclient in our study here. The e�ect of the number of clientson the performance of caching and prefetching schemes willbe reported in the future.Notation Descriptionn Number of virtual objectsN Size of storage cache (percentage of database)! Parameter for determining access score (�xed at 0.5)Fdisk Prefetching scheme for storage cacheW Window size� Exponentially decreasing weight (�xed at 0.5)P Moving patterns of the viewerTable 1: Parameters listing for experiments.The virtual environment is modeled as a 2000�2000 squ-are units in size. The n virtual objects are distributed uni-formly among the square units, each containing an averageof n4000000 objects. The viewer is assumed to reside at thecenter of the viewer scope. The viewing angle is set to be 120degrees, i.e., 2�3 . The radius of the viewer scope is set to 10units. Only storage cache at the client is considered in ourexperiments. The cache size is equal to N% of the databasesize. We experimented with di�erent prefetching schemes,including no prefetching (No Prefetch), Mean, Window, andEWMA. No Prefetch forms a base case for comparison. Weexperiment with four window size, W , ranging from 1, 3, 5,and 7. We denote Window with window size, W , as Win-W . We refer to EWMA with residual adjustment enabledby EWMA-R, and EWMA with residual adjustment disabledby EWMA-NR.We experiment with three moving patterns, P , of a viewer,as depicted in Figure 8. Each pattern contains a sequenceof movement steps. The �rst pattern models a constant cir-cular translation pattern (CP). The viewer moves circularlystarting and ending at the same location. Each movementstep includes a translation of 150 units along the viewing di-rection, followed by rotating the viewing direction throughan angle of �15 , i.e., 12 degrees. At every position, the viewerrotates by ��9 , i.e., �20 degrees. This models a situationwhere a viewer explores the virtual objects around him/herfor every movement. The second pattern, called changingcircular pattern (CCP), models the same pattern as CP ex-cept that the moving direction changes with an angle of�36 , i.e., 10 degrees, after every 4 movement steps. Finally,in the random moving pattern (random walk or RW), eachmovement step is either a translation of arbitrary length ora rotation of arbitrary angle.Figure 8: Moving patterns: (a) CP, (b) CCP, and (c) RW.

6.2 Experiments from SimulationThe purpose of our simulation is to study the performanceof the caching mechanism, with and without prefetching, onvarious moving patterns. In our simulation model, there are5000 virtual objects. Each object is modeled by a progres-sive mesh, containing a base mesh and a list of progressiverecords. The number of progressive records associated witheach object model follows a normal distribution with a meanof 25,000 records and a standard deviation of 2,500 records.Each progressive record has a size of 40 bytes while eachbase mesh has a size of 2KB. The database is approximately5GB and the size of the storage cache is �xed at 1% of thedatabase.
(a) Hit Ratios

74
76
78
80
82
84
86
88

CP CCP RW
Viewer Moving Pattern

Hit
 Ra
tio
s (
%)

No Prefetch Mean Win-1 Win-3
Win-5 Win-7 EWMA-NR EWMA-R

(b) Visual Perception

80
82
84
86
88
90
92
94

CP CCP RW
Viewer Moving Pattern

Vis
ua
l P
erc
ep
tio
n (
%)Figure 9: Performance from simulation.The measurements of the metrics are depicted in Fig-ure 9. We observe that even without prefetching, the cachingmechanism performs reasonably well, achieving a hit ratioranging from 79% to 83% (Figure 9a). With prefetching, thehit ratios could be improved by up to 6%. We observe thatMean is not very e�ective in predicting future movements,performing similar to the base case, i.e., No Prefetch. BothWindow and EWMA perform equally well in improving thehit ratios of the caching mechanism.With respect to Window, a small window size results inbetter performance under the CP and CCPmoving patterns.Under CP and CCP, the moving direction is always chang-ing, very often with a constant angle. With a large windowsize, aged moving vectors will contribute to the prediction ofthe moving vector, introducing some noise in the prediction.By contrast, under the RW moving pattern, each movementstep bears a high degree of randomness. The small windowdoes not capture enough information to predict the nextmovement vector. Therefore, the performance with a smallwindow size is not as good as that with a large window sizeunder RW.EWMA exhibits a similar behavior. EWMA-R performsbetter under the CP and CCP moving patterns. This ismainly because the angle deviation under these two mov-ing patterns exhibit a well de�ned pattern and is thus pre-dictable. Under the RW moving pattern, the angle deviationdoes not exhibit a clear pattern and the residual correctiondoes not seem to yield any improvement.6.3 Experiments from PrototypeIn our prototype experiments, the server runs on an Ultra-Sparc 2 station with 128MB RAM. The client runs on anSGI Indigo 2 station with 64MB RAM. We study the be-havior of the caching and prefetching mechanisms under areal system and compare the relative performance againstthe simulation. Due to space limitation, we only presenttwo representative sets of experiments in this paper.6.3.1 Experiment #1Our �rst set of experiments resembles our simulated exper-iment presented in Section 6.2. However, since running ex-

periments on a prototype is very time-consuming, we reducethe number of objects, n, to 500 here. The average size ofeach object is also reduced to 200KB. All other parametersremain the same. We hope to be able to compare the gen-eral behavior of the mechanism under a real system withsimulated behavior with this adjustment.
(a) Hit Ratios

78
80
82
84
86
88
90
92

CP CCP RW
Viewer Moving Pattern

Hit
 Ra
tio
s (
%)

No Prefetch Mean Win-1 Win-3
Win-5 Win-7 EWMA-NR EWMA-R

(b) Visual Perception

80
82
84
86
88
90
92
94

CP CCP RW
Viewer Moving Pattern

Vis
ua
l P
erc
ep
tio
n (
%)Figure 10: Performance from Experiment #1.The measurements of the metrics are depicted in Fig-ure 10. For the RW moving pattern, the general behavior ofthe performance from the prototype is similar to that fromthe simulation. The only di�erence is a slight increase inhit ratios and visual perception by a few percents in theexperiment, across all prefetching schemes.For other moving patterns, the improvement in hit ratiosfrom EWMA seems to be smaller than those brought aboutby simulation. This is perhaps due to the object distributionin the experimental environment. We are still in the processof testing di�erent object distributions with repetition, andwill report our �ndings in the future. The impact on visualperception is similar to hit ratios, but at a smaller scale.6.3.2 Experiment #2In our second experiment, we study the e�ect of cache size onthe performance of the caching and prefetching mechanisms.To obtain a better understanding on the e�ect of cache size,we further measure the average response and latency times.Response time refers to the amount of time spent from themoment a client initiates a query for renderable objects tothe moment when the optimal resolutions of all renderableobjects are available. Latency time refers to the amountof time spent between the initiation of a query to the timethe base meshes of renderable objects are available at theclient. It measures the observable delay experienced by aviewer when the viewer makes a move.In this experiment, n is again �xed at 500 objects. Themoving pattern is �xed at CP. The size of the storage cache,N , ranges from 0% to 2% of the database. Other parametersremain the same. Figure 11 depicts the results, with thesecond row showing the response and latency times of theexperiments. With a cache size of only 0.5% of that of thedatabase, it is able to reduce response and latency times ofthe application to a quarter and a half respectively, evenwithout prefetching.We observe an increase in hit ratios and visual perceptionwhen the cache size increases as shown in Figure 11. It issimply because a large cache size is able to hold more objectmodels; thus, the chance of hitting an object model in thelocal cache becomes higher. The improvement in both hitratio and visual perception from N = 0.5% to N = 1% isvery signi�cant. However, the improvement seems to levelo� when cache size increases beyond 2%. EWMA is alsoperforming more satisfactory, yielding similar performanceas in the simulation.With respect to response and latency times, they arenot as stable as hit ratio and visual perception, due to theirheavy dependency on the available network bandwidth when

(a) Hit Ratios

45
50
55
60
65
70
75
80
85
90
95

0 0.5 1 1.5 2
Cache Size (%)

Hit
 R
ati
os
 (%
)

No Prefetch Mean
Win-1 Win-3
Win-5 Win-7
EWMA-NR EWMA-R

(b) Visual Perception

65
70
75
80
85
90
95

0 0.5 1 1.5 2
Cache Size (%)

Vis
ua
l P
erc
ep
tio
n (
%)

(c) Response Times

10

20

30

40

50

60

0 0.5 1 1.5 2
Cache Size (%)

Re
sp
on
se
 Ti
me
s (
se
c.)

(d) Latency Times

6

8

10

12

14

16

0 0.5 1 1.5 2
Cache Size (%)

La
ten
cy
 Ti
me
s (
se
c.)Figure 11: Performance from Experiment #2.the prototype is running. However, a general observationcan still be drawn about their relative performance. Withcaching, latency time is usually in the order of a few sec-onds. Compared with other prefetching schemes, the EWMAschemes generally result in a smaller access latency. We alsoobserve that prefetching leads to a small improvement in la-tency. The response time is about two to four times of thelatency, i.e., from 10 to 20 seconds with a cache size of 1%for all movement patterns, as in Experiment #1, and higherwith a smaller cache size, as depicted in Figure 11c. How-ever, when compared with no caching, caching alone couldimprove the response and latency times of the walkthroughapplication by quite a few times (see Figures 11c and 11d).Prefetching also leads to improvement in response times.Finally, with an increasing cache size, improvement to re-sponse and latency times is also observed.7 ConclusionsIn this paper, we have described our implementation of a vir-tual walkthrough system. We describe technical challengesthat need to be addressed in order to improve the perfor-mance of such kind of applications. As one alternative toimprove the performance, we propose a caching mechanismthat employs the local storage of a client machine to holdremote objects residing at the database server. The cachingmechanism is further complemented by a prefetching mech-anism to predict objects accessed in future. The predictionis based on the semantics of virtual walkthrough applica-tion. The various prefetching methods are investigated forperformance and are shown to be e�ective.We are currently conducting more experiments to studythe performance of the caching and prefetching mechanismunder di�erent situations. In particular, we are studying thee�ect of multiple clients on the performance of the cachingmechanism. We are also investigating the situation whenobjects are dynamic, i.e., an object can move within thevirtual environment. This further complicates our cachingmechanism as the updated location of each dynamic objectneeds to be re
ected in the object model cached in eachclient in a consistent manner.AcknowledgementsThis research is supported in part by the PolyU grant num-bers 350/960 and 351/217.

References[1] J. Calvin, A. Dicken, B. Gaines, P. Metzger, D. Miller, andD. Owen. The SIMNET Virtual World Architecture. In Pro-ceedings of IEEE Virtual Reality Annual International Sym-posium, pages 450{455, 1993.[2] M. Carey, M. Franklin, M. Livny, and E. Shekita. Data CachingTradeo�s in Client-Server DBMS Architectures. In Proceedingsof the ACM SIGMOD International Conference on Manage-ment of Data, pages 357{366, 1991.[3] C. Carlsson and O. Hagsand. DIVE - a Multi-User Virtual Re-ality System. In Proceedings of IEEE Virtual Reality AnnualInternational Symposium, pages 394{400, 1993.[4] B. Y. L. Chan, A. Si, and H. V. Leong. Cache Managementfor Mobile Databases: Design and Evaluation. In Proceedingsof IEEE International Conference on Data Engineering, pages54{63, February 1998.[5] J. Chim, M. Green, R.W.H. Lau, H.V. Leong, and A. Si.On Caching and Prefetching of Virtual Objects in DistributedVirtual Environments. In Proceedings of ACM Multimedia,September 1998.[6] J. Chim, R.W.H. Lau, H.V. Leong, and A. Si. Multi-resolutionCache Management in Digital Virtual Library. In Proceedings ofIEEE Advances in Digital Libraries Conference, pages 66{75,April 1998.[7] F. Crow. A More Flexible Image Generation Environment. InACM Computer Graphics (SIGGRAPH'82), pages 9{18, July1982.[8] M. DeHaemer and M. Zyda. Simpli�cation of Objects Ren-dered by Polygonal Approximations. Computers & Graphics,15(2):175{184, 1991.[9] W. E�elsberg and T. Haerder. Principles of Database Bu�erManagement. ACM Transactions on Database Systems, pages560{595, December 1984.[10] J. Falby, M. Zyda, D. Pratt, and R. Mackey. NPSNET: Hierar-chical Data Structures for Real-Time Three-Dimensional VisualSimulation. Computers & Graphics, 17(1):65{69, 1993.[11] M. Franklin, M. Carey, and M. Livny. Global Memory Man-agement in Client-Server DBMS Architectures. In Proceedingsof International Conference on Very Large Databases, pages596{609, 1992.[12] C. Greenhalgh and S. Benford. MASSIVE: a Distributed VirtualReality System Incorporating Spatial Trading. In Proceedings ofthe International Conference on Distributed Computing Sys-tem, pages 27{34, 1995.[13] H. Hoppe. Progressive Meshes. In ACM Computer Graphics(SIGGRAPH'96), pages 99{108, August 1996.[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuet-zle. Mesh Optimization. In ACM Computer Graphics (SIG-GRAPH'93), volume 27, pages 19{26, August 1993.[15] V. _I�sler, R.W.H. Lau, and M. Green. Real-Time Multi-Resolution Modeling for Complex Virtual Environments. In Pro-ceedings of ACM Symposium on Virtual Reality Software andTechnology, pages 11{20, July 1996.[16] R.W.H. Lau, M. Green, D. To, and J. Wong. Real-Time Continu-ous Multi-Resolution Method for Models of Arbitrary Topology.Presence: Teleoperators and Virtual Environments, pages 22{35, February 1998.[17] R.W.H. Lau, D. To, and M. Green. An Adaptive Multi-Resolution Modeling Technique Based on Viewing and Anima-tion Parameters. In Proceedings of IEEE Virtual Reality An-nual International Symposium, pages 20{27, 1997.[18] M. Macedonia, M. Zyda, D. Pratt, P. Brutzman, and P. Barham.Exploiting Reality with Multicast Groups: A Network Architec-ture for Large-scale Virtual Environments. In Proceedings ofIEEE Virtual Reality Annual International Symposium, pages2{10, March 1995.[19] B. Mannoni. A Virtual Museum. Communications of the ACM,40(9):61{62, 1997.[20] C. Min, M. Chen, and N. Roussopoulos. The Implementationand Performance Evaluation of the ADMS Query Optimizer: In-tegrating Query Result Caching and Matching. In Proceedings ofInternational Conference on Extending Database Technology,pages 323{336, 1994.

[21] T. Ohshima, H. Yamamoto, and H. Tamura. Gaze-DirectedAdaptive Rendering for Interacting with Virtual Space. In Pro-ceedings of IEEE Virtual Reality Annual International Sym-posium, pages 103{110, July 1996.[22] I.S. Pandzic, T.K. Capin, E. Lee, N.M. Thalmann, and D. Thal-mann. A Flexible Architecture for Virtual Humans in NetworkedCollaborative Virtual Environments. Eurographics, 16(3):177{188, 1997.[23] D. Schmalstieg and M. Gervautz. Demand-Driven GeometryTransmission for Distributed Virtual Environments. In Proceed-ings of Eurographics '96, pages 421{432, 1996.[24] W. Schroeder, J. Zarge, and W. Lorensen. Decimation of Tri-angle Meshes. In ACM Computer Graphics (SIGGRAPH'92),volume 26, pages 65{70, July 1992.[25] A. Si and H. V. Leong. Adaptive Caching and Refreshing in Mo-bile Databases. Personal Technologies, 1(3):156{170, September1997.[26] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Sys-tem Concepts. McGraw-Hill, 1996.[27] G. Singh, L. Serra, W. Png, and H. Ng. BrickNet: A SoftwareToolkit for Network-Based Virtual Worlds. Presence: Teleoper-ators and Virtual Environments, 3(1):19{34, 1994.[28] B. Watson, N. Walker, and L. Hodges. E�ectiveness of SpatialLevel of Detail Degradation in the Periphery of Head-MountedDisplays. In ACM CHI'96, pages 227{228, April 1996.

