In Proceedings of ACM Symposium on Virtual Reality Software and Technology, pp. 25-34, Nov. 1998.

Multi-Resolution Model Transmission in Distributed Virtual Environments

Jimmy H.P. Chim?
Danny To*

Rynson W.H. Lau*
Mark Greent

Antonio Si' Hong Va LeongT
Miu Ling Lam’

i Department of Computing, The Hong Kong Polytechnic University, Hong Kong

* Department of Computer Science, City University of Hong Kong, Hong Kong
' Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303, U.S.A.

1 Department of Computer Science, University of Alberta, Edmonton, Alberta, Canada

Abstract

Distributed virtual environments allow users at different ge-
ographical locations to share and interact within a common
virtual environment via a local network or through the In-
ternet. To deliver a good performance for such applications,
we need to address several issues in different research dis-
ciplines. First, we must be able to model virtual objects
effectively. The recently developed multi-resolution tech-
niques for object modeling are of great value here, since
they are capable of simplifying the object models and there-
fore reducing the time to render them. This may greatly
reduce the demand for rendering performance on the client
machines. Second, with the constraint of the limited band-
width of the Internet, we need to reduce the response time
by reducing the amount of data requested over the network.
Caching of suitable object models of high affimity will re-
duce the amount of data requested over the network for a
faster response time. Prefetching object models by predict-
ing those which are likely to be used in the near future and
downloading them in advance will lead to a similar improve-
ment. Third, the Internet often suffers from disconnection.
A caching mechanism that allows objects to be cached with
at least their minimum resolutions will be useful to provide
at least a coarse view of the objects to the viewer for im-
proved visual perception. In this paper, we describe our
implementation of a distributed walkthrough system. Two
techniques are fundamental to our system, a multi-resolution
caching mechanism and a set of object prefetching mecha-
nisms. Towards the end of the paper, we quantify the per-
formance of the proposed mechanisms.

1 Introduction

In a virtual walkthrough application, a user could explore a
specific place of interest without having to travel physically.
The place of interest is modeled as a virtual environment,
containing a vast number of virtual objects. Sample appli-
cations of this sort include virtual museum, virtual library,
virtual university, etc. [19]. Employing a standard client-
server architecture, information of virtual objects, including

their locations, sizes, orientations, and shapes, will be main-
tained in a central database server. When a viewer (user)
walks through a virtual environment, information of the vir-
tual objects located within a visible distance from the viewer
will be conveyed to the client machine of the viewer for ren-
dering. As the viewer moves within the virtual environ-
ment, the relative locations and orientations of the objects
may change with respect to the position of the viewer. Such
changes of information should be reflected into the rendered
images in a timely fashion. In general, the virtual objects
could be dynamic as well, changing their locations and ori-
entations within the virtual environment. However, in this
paper, we only focus on virtual environments where objects
are static. The goal is to provide a good performance of
the application, both in terms of responsiveness and resolu-
tion, under the existing constraints of relatively low Internet
bandwidth and the large memory demand of virtual objects.

We are addressing several issues in this application. First,
virtual objects must be modeled in a compact form so as to
reduce the amount of storage space needed and the amount
of time required to transfer the objects from the server to
a client. A compact modeling of virtual objects also has
the benefit of fast retrieval from secondary storage, both at
the server and at a client. However, over-compact modeling
of virtual objects will increase the overhead in compress-
ing and decompressing the objects. The recently developed
multi-resolution methods for object modeling [13, 16] could
be employed here. The techniques allow progressive trans-
mission of objects with only minimal overheads.

Second, with the limited bandwidth of the Internet, we
need to reduce the amount of data requested over the net-
work for faster response time. This can be achieved by
caching and prefetching mechanisms. A caching mechanism
allows a client to utilize its memory and local storage to
cache currently visible objects that are likely to be visible
in the near future [11]. A prefetching mechanism allows
a client to predict objects that will be visible in the future
and obtain the objects in advance to improve response time.
A good caching mechanism should retain objects with high
affinity while a good prefetching mechanism should predict
those objects which will most likely be used.

Third, the Internet often suffers from various degrees of
disconnection. The local storage cache of a client can be
used to provide partial information to support a certain de-
gree of disconnected operation. For example, a viewer may
still be able to see a coarse resolution of objects in the vir-
tual environment if the minimal approximated models of the
objects are cached. Even if only the coordinates of the vir-
tual objects are cached, a viewer could still be aware of the

existence of the objects.

In this paper, we describe our implementation of a dis-
tributed walkthrough system. Two techniques are funda-
mental to our system, a caching technique called the multi-
resolution caching mechanism and a prefetching technique
composing of a set of object prefetching mechanisms. The
rest of the paper is organized as follows. Section 2 presents
a survey on relevant research. Section 3 presents the multi-
resolution modeling technique, and Section 4 presents the
multi-resolution caching and prefetching mechanisms. In
Section 5, we discuss the implementation of our experimen-
tal prototype system. We quantify the performance of our
caching and prefetching mechanisms with several experi-
ments via simulation as well as on the prototype in Sec-
tion 6. Finally, we conclude our paper with a discussion on
possible future work.

2 Related Work

Several approaches have been proposed to distribute data
from the server to the clients in distributed virtual real-
ity applications. Most existing systems, such as DIVE [3],
SIMNET [1], and VLNET [22], use a complete replication
approach to distribute all geometry data to the clients be-
fore the start of the application. This approach assumes
the use of a reliable high speed network and is therefore not
suitable for use in the Internet environment. If the geom-
etry database is large, distributing it via the Internet may
result in a high pre-loading time. Another approach to dis-
tribute geometry data is to send them on demand to the
clients [10, 23, 27] during the application. This approach
employs a standard client-server architecture, in which a
central server maintains a geometry database of the virtual
environment and distributes data to clients when requested.
Client-server architecture is very common in the Internet.

In a client-server database environment, to combat the
network transmission latency, a multi-level caching mecha-
nism could be established by caching database objects from
the server in a client’s local memory and/or local storage.
A storage cache has an advantage of persistence. When dis-
connected from the server, a client can still operate on the
database objects in its local storage.

In a conventional client-server database environment, data
objects are usually transferred from the database server to
a client on a per-page basis [2, 11]. This is primarily be-
cause the server’s storage is also page-based. The overhead
for transmitting one item or a page is similar. In a virtual
walkthrough environment, virtual objects are represented
using object models and are usually very complex and large
in size, occupying possibly multiple pages. The overhead
required to transfer an object model (or simply object) in
its entirety via the narrow bandwidth Internet is very high.
Furthermore, we might not always need to render an ob-
ject at its full resolution (see Section 4). Hence, there will
be situations that we need to transfer less than a page of
information and there also exist situations that we need to
transfer more than a page of information. A more dynamic
granularity for caching is therefore needed in a virtual walk-
through environment.

If a client can provide unbounded disk storage and wait
for a possibly very long pre-loading time, we could trans-
mit all virtual objects in the environment to the client be-
fore starting the walkthrough, as in the complete replication
approach [1, 3, 22]. However, a more realistic situation is
that the available storage for caching and the available pre-
loading time are limited [20]. A cache replacement policy

must be employed to retain only frequently accessed ob-
jects. Finally, to reduce the access and rendering latency,
it 1s also beneficial to prefetch potentially visible objects in
the client, if disk space is available.

2.1 Multi-Resolution Modeling

In a virtual walkthrough application, rendering a complex
object at a client is expensive. From the perspective of a
viewer in the virtual environment, distant objects appear
smaller than nearby objects after projection. Most of the de-
tails of distant objects are actually not visible to the viewer.
Hence, it is only necessary to represent an object at the
resolution just high enough for the given viewing distance.
This could reduce not only the rendering time, but also the
transmission delay and the storage required at a client to
hold the objects. Here, we employ multi-resolution mod-
eling techniques to study the effect of caching objects in a
client at various granularities. In brief, our multi-resolution
mechanism caches and prefetches a nearby object at a higher
resolution and a distant object at a lower one.

There are many methods developed for generating multi-
resolution models [8, 14, 24]. However, most of them focus
on the accuracy of the simplification, and hence, are slow.
A popular method to overcome the performance limitation
is called the discrete multi-resolution method. This method
pre-generates a few key models of an object at different res-
olutions. During run-time, the object’s distance from the
viewer determines which model to use for rendering [7]. Al-
though this method is fast and simple, it has one major
limitation in our context. Since all the key models are in-
dependent of each other, the overall amount of information
needed to represent a particular object is increased and is
dependent on the total number of key models used. In a dis-
tributed environment, this will increase the network traffic
and hence reduce the availability of objects.

A method referred to as progressive meshes was recently
proposed for progressive transmission of multi-resolution ob-
ject models [13]. The method is based on two operators,
edge collapse for reducing model resolution, and edge split
for increasing model resolution. Each object is modeled as
an ordered list. The list begins with the minimal resolu-
tion model of the object, referred to as the base mesh. Each
subsequent, record in the list, referred to as the progressive
record, stores information of an edge split. If we apply the
information stored in each of the records to the object in or-
der, the object will gradually increase in resolution until it
reaches the maximum resolution, when all the records in the
list are exhausted. Conversely, the method may begin with
the highest resolution model of the object; if we apply the
information stored in each of the records in reverse order,
which is equivalent to an edge collapse operation, the ob-
ject will gradually decrease in resolution until it reaches the
minimum resolution. We have recently developed a similar
method [15, 16].

2.2 Replacement and Prefetching Techniques

In [9], various cache replacement policies have been pro-
posed and their suitabilities in a conventional database sys-
tem have been examined. These policies are all page-based,
due to the logical mapping made by the database or oper-
ating system to the physical storage. In general, the per-
formance of individual replacement policies is sensitive to
the characteristics of queries initiated and the application
environment. A general conclusion on the performance of
the replacement policies cannot be made. In practice, the

replacement policy is often approximated by the Least Re-
cently Used (LRU) policy in conventional caching [2, 11, 26].
In [25], it was shown that LRU policy is not appropriate in a
context where the objects accessed by a client might change
over time. Rather, the semantics of data access is more
important in defining the replacement policy. We, there-
fore, need to develop a more appropriate replacement policy
based on the semantics of accesses in a walkthrough envi-
ronment. It was also noticed in [4] that prefetching could
be very beneficial in improving the performance of database
applications if the prefetching is performed intelligently.

3 Multi-Resolution Modeling Technique

3.1 Object Scope

In our method, each virtual object, o, is stored in the database
server at its maximum resolution, ﬁo, in the form of a pro-
gressive mesh. Since the multi-resolution method we use
here is based on edge collapse, the maximum resolution Ro
of o is actually reflecting a count of the total number of
edges which can be collapsed from its maximum resolution.
Each object will also have a base mesh at its minimum res-
olution, R,. We say that the base mesh R, of o represents
o at resolution level 0, denoted as £, which has a value of
0. Each progressive record will increase the resolution level
by 1. Therefore, the maximum resolution Ro represents o
at the highest resolution level, denoted as ﬁo, when all pro-
gressive records are applied.

To minimize the amount of data needed to be handled,
most existing methods consider only the area of interest
(AOI) of the viewer [10, 18, 23]. If an object falls inside
the AOI of the viewer, the object is considered visible to
the viewer. Otherwise, the object is considered too far to
be visible. Although these methods can quickly eliminate
invisible objects, they do not consider the sizes of the ob-
jects. Hence, a mountain located just outside the AOI of the
viewer may still be visible to the viewer, but is considered
as invisible, while a tiny object such as a book located just
inside the AOI of the viewer is unlikely to be visible to the
viewer, but is considered for visibility. The former situation
may result in a sudden appearance of a large object, and the
latter situation may result in a waste of processing time.

To overcome this limitation, we generalize the AOI con-
cept to both viewers and objects. We call them the viewer
scope and the object scope. We denote the viewer scope for
viewer, V', by Owv and the object scope for object, o, by O,.
A viewer scope is similar to AOI. It indicates the depth of
sight of the viewer, i.e., how far the viewer can see. A viewer
with a good eye-sight or equipped with a special device may
be able to see objects that are further away, and therefore
may be assigned with a larger scope. A short-sighted viewer
may only be able to see nearby objects, and therefore may
be assigned with a smaller scope. An object scope indicates
how far the object can be seen. A large object has a larger
scope and a small object has a smaller scope. An object
may be visible to a particular viewer only when its scope
overlaps with the viewer scope. When the two scopes over-
lap, the distance between the object and the viewer and the
angle of the object from the viewer’s viewing direction can
be used to determine the optimal resolution of the object.
Obviously, a viewer may also be considered as an object
and assigned with an object scope in addition to the viewer
scope. This object scope of the viewer will define how far
the viewer can be seen by another viewer within the same
virtual environment. This approach is somewhat similar to

the one proposed by [12].

In our implementation, we define a scope as a circular
region. Therefore, each scope (object or viewer) is charac-
terized by aradius. We denote the radius of the object scope
for object o, i.e., Oo, as ro, while the radius of the viewer
scope for viewer V', i.e., Ov, as roy .

The interaction between a viewer and the virtual envi-
ronment is illustrated in Figure 1. In addition to the viewer
scope, each viewer, V, is also associated with a viewing di-
rection, ¥y, and a location, locy. The viewing direction
defines the line of sight of the viewer. Given the location
of a viewer, all virtual objects whose object scopes intersect
with the viewer scope are considered as visible to the viewer.
Even though some objects may be located at the back of the
viewer, the viewer may be able to see them within a very
short time simply by turning around. As will be described
later, these objects have the highest priority to be cached in
the client’s memory and we refer them as cachable objects.
Fach viewer also has a viewing angle. This viewing angle
defines the viewer’s viewing region, which is a sub-space of
the viewer scope. All cachable objects within the viewing
region are considered for rendering, and we refer them as
renderable objects. Each renderable object will be rendered
at its optimal resolution. We denote the optimal resolution
of an object, o, by R, and its resolution level by £,. This
optimal resolution of an object is determined according to
the object distance from the viewer and the angular distance
of the object from the viewer’s viewing direction, i.e., line of
sight. If the object is rendered at a resolution higher than
this optimal resolution, the additional details will not be
easily noticeable to the viewer. By contrast, if the object is
rendered at a resolution lower than this optimal resolution,
the image quality of the rendered object as perceived by the
viewer drops rapidly [5]. Such a perceived image quality is
called the visual perception.

viewing region object scope

v
viewing
’ angle
5
viewer scope

Figure 1: Objects-viewer interaction in a virtual
environment.

3.2 The Optimal Resolution of an Object Model

The optimal resolution of an object model can be deter-
mined according to the visual importance of the object to a
viewer. In [17], we have identified several factors that may
affect the visual importance of an object. Here, we only con-
sider two of those factors, which are relevant to the context
here. The first one is the distance factor. If an object is far
away from the viewer, the object may be considered as vi-
sually less important. The second factor is the line of sight.
Studies have shown that when an object is located outside
the line of sight, the viewer is unable to perceive much detail
from the object [21, 28]. Degradation of peripheral visual
detail can improve rendering performance and reduce per-
ceptual impact. Here, we assume that the viewer’s line of
sight is at the center of the screen.

Figure 2 depicts the visual importance of an object, o,
to a viewer, V. In the figure, D, v indicates the current
distance of the object from the viewer, while D, v mas 18
the distance between the object and the viewer when their
scopes just overlap. Hereafter, we will consider in the con-
text of viewer V' and the subscript V' can be dropped if the
context is clear. Since a scope is defined as a circular region,
Do maz 1s equal to the sum of the radii of the viewer scope
and the object scope. The angular distance of the object
from the viewer’s line of sight, i.e., its viewing direction, ¥y,
is denoted as 8,,v or simply 8, (—7 < §, < x). The visual
importance of o to a viewer can be defined with the following
formula:

D - D _K
Mﬁ e I\o|90|7 0 < D, < Do,mam

] =

° (Do,ma.r -

where K, is a constant for adjusting the decrement rate of
object o due to the increase in 6,. In our implementation, we
do not want the line of sight factor to dominate the distance
factor. Hence, we use a small value of K.

object scope

viewer scope object o

object scope just
overlaps with
viewer scope

viewer V. e
Do,max /-

object o
object scope

Figure 2: Visual importance of an object to a
viewer in a virtual environment.

To incorporate this idea into the progressive multi-resolu-
tion method described in [13], the object importance, I,
is used to determine the optimal resolution of the object
model. During the walkthrough, we continuously determine
those cachable objects. When the scope of an object, o,
touches the perimeter of the viewer scope, the optimal reso-
lution level of the object will be equal to its base mesh, which
provides the minimal resolution of the object. As the object
moves closer to the viewer or to the viewer’s line of sight,
its optimal resolution increases. The object model of each
cachable object at its optimal resolution will be transmitted
to the client if it is not already cached in the local storage.
When transmitting the models from the server to a client,
models of objects within the viewing region are transmitted
first, followed by the transmission of those outside the view-
ing region. The received models will be cached in the client’s
local storage. If there is not enough cache storage, we will
throw away some progressive records of some object models
that are not likely accessed in the near future in order to
accommodate the new models, i.e., we try to decrease the
resolution of some existing cached objects (see Section 4).

We also attempt to further improve the performance of
the walkthrough application by having the server prefetch
objects which will most probably be accessed in the future
to the client. This is achieved by having the server predict
the next location and viewing direction of the viewer based
on his/her past movement profile. Models of objects whose
scopes overlap with the viewer scope at the predicted loca-

tion will be transmitted at their optimal resolutions to the
client as well (see Section 4).

Our method has several advantages over previous ap-
proaches. First, in [23], discrete multi-resolution method is
used for model transmission. Redundant information will
have to be sent through the network, since multiple models
of the same object at different resolutions need to be trans-
mitted. Our method applies the progressive mesh technique
for model transmission. No redundant information needs
to be sent across the network. Second, the importance of
an object is calculated based not only on the distance of the
object from the viewer, but also on the size of the object con-
cerned and the resolution of the viewing device. Third, our
caching mechanism differs from conventional caching mech-
anisms [2, 11, 26] in that objects could be cached at mul-
tiple degree of granularity. Replacement is also based on
object access patterns rather than conventional LRU policy.
Finally, the performance of the walkthrough application is
further improved by predicting the future movement of the
viewer and prefetching objects in advance.

4 Multi-Resolution Caching Mechanism

Multi-resolution modeling allows the database server to trans-
mit an object model at the optimal resolution for rendering.

This could save the scarce Internet bandwidth from trans-

mitting details of an object too small to be visible to the

viewer. To further reduce the dependency on the Internet

to reduce transmission delay and to support disconnected

operation, a caching and prefetching mechanism is needed

to retain objects of high affinity and predict those that will

most likely be accessed in the near future.

4.1 The Cache Model

When a viewer, V', moves within the virtual environment,
the client machine, C, will transmit the current viewing
direction, ¥y, and the current location, locy, of V to the
server. This is a query to the database server for all cachable
objects. Concurrently, C' will identify the cachable objects
among the cached objects stored in its local storage cache
based on the list supplied by the server.

Each cached object, o, is associated with a resolution,
R %, indicating the current highest possible resolution of the
model available for rendering. This resolution level depends
on the number of progressive records, L} < ﬁo, cached in
C'. C would then submit an ezxistent list to the server, i.e.,
a list of {0, £}) pairs about those cachable objects cached
in C’s storage. Cachable objects with £} > £, do not need
to be transmitted as C can render them at the optimal res-
olution, R,, from locally cached data. On the other hand,
those cachable objects not cached in C' or those not at the
required optimal resolution £, will have to be transmitted
to C. A result list in the form of (o, progressive mesh) pair is
transmitted. Such a progressive mesh only contains enough
progressive records to define the optimal resolution of the
object.

Upon receiving the result list from the server, ¢’ might
cache the objects in its local storage. If the storage is ex-
hausted, a replacement policy identifies the victim objects to
be discarded. For each object, o, an access score indicating
the prediction of its future access probability is determined.
The higher the access score is, the higher is the probabil-
ity that o will be accessed again soon. If an object has a
score higher than the lowest score of some currently cached
objects, it will be cached.

4.2 Multi-Resolution Replacement Mechanism

We employ the Most Required Movement (MRM) replace-
ment technique in defining the access score for each object.
It is based on the observation that the farther an object is
from the viewer, the lower the resolution it can be rendered
since the longer it will take for the viewer to move to view
the object in greater detail. Consequently, its value of being
cached in the storage is lower. Similarly, the larger the angle
between an object and the viewer’s line of sight is, the lower
the required resolution is since the longer it will take for a
client to rotate to view the object directly in front. Its value
of being cached in the storage is also lower. Preliminary
experiments have shown that such a replacement scheme
outperforms traditional LRU replacement scheme [6]. In
this paper, we investigate the effectiveness of MRM using a
real prototype, taking into account of the viewer and object
scope information.

There can be different formula to calculate the access
score, S, v, for an object, o, with respect to a viewer, V.
Since we would like to have as few parameters to be adjusted
as possible, we have developed the following formula with
only a single adjustable parameter w (0 < w < 1). Using
the notations in Figure 2, S, v is defined as:

D, —ro,
TOv

60
T)

Sov = w(l —

:)+ (1 —w)

When the object with the lowest access score is selected
for replacement, we will not remove the whole object from
the storage cache immediately. Rather, its extra resolution
detail will be reduced to its optimal resolution by remov-
ing all the extra progressive records. This will make room
for the incoming objects. If there is still not enough room
to accommodate the new objects, the object with the next
lowest access score will be selected for replacement and this
process will be iterated.

When there is still not enough room to accommodate the
new objects even after all cached objects have been reduced
to their optimal resolutions, all progressive records of the
object with the lowest access score will be removed from the
storage cache, leaving only the base mesh of the object at
its minimum resolution. Again, this process will be iterated.
Finally, the base mesh of the object with the lowest access
score will be removed if there is still not enough room. This
process will be iterated until enough room is allocated for
all new objects.

This multi-resolution replacement scheme tries its best
to keep a coarse resolution of an object in a client’s storage.
This provides a viewer with a much better visual percep-
tion since all or most of the cachable objects could be seen
instantaneously, even though they may only be at a low res-
olution.

4.3 Prefetching Mechanism

To enable prefetching, the server maintains a separate profile
for each viewer V', containing the set of historical movement
vectors, {11, M2, ..., Mn_1}. Each vector is calculated from
the corresponding viewer’s location and orientation, con-
taining a moving direction and a moving distance. When
V moves to a new location, loc,, with a new orientation,
the n'® movement vector, @, is calculated. The server at-
tempts to predict the n4+1"* movement vector, Mny1, of V
and transmits objects that would be cachable if V' were at
locny1, in addition to the cachable objects at loc,. This

would save future requests to the server if the prefetched
objects are indeed required by the client.

We propose three different schemes to predict the next lo-
cation of the viewer: mean, window, and exponential weighted
moving average (EWMA). The semantics of these schemes are
depicted in Figure 3.

previous movement
vectors —_ » m, /_{
Mp+q

N —_—
& My
" estimated

-~ movement vector

(€Y

-
m, m,
Mp+y 'm‘n . M1
-
Mp2

©

Figure 3: Prediction of next moving direction:

(a) mean, (b) window, and (¢) EWMA.

In the mean scheme, the next movement vector, my41, is
predicted as the average of the previous n movement vectors,
as depicted in Figure 3(a) with three movement vectors. In
the window scheme, each viewer is associated with a window
of size W, holding the previous W movement vectors. The
next movement vector is predicted as the average of the
W most recent vectors. This is indicated in Figure 3(b),
showing a window of size W = 2.

A problem for the window scheme is the amount of stor-
age needed in maintaining the movement vectors within the
windows. To avoid the need of a moving window, and to
adapt quickly to changes in viewer moving patterns, our
EWMA scheme assigns a weight to each previous movement
vector so that recent vectors have higher weights and the
weights tail off as the vectors become aged. A parameter
is the exponentially decreasing weight, a. The most recent
vector will receive a weight of 1; the previous vector will
receive a weight of a; the next previous one will receive a
weight of o®, and so on. This idea is depicted in Figure 3(c),
indicating the predicted moving direction.

EWMA has been shown to be quite effective in predicting
access probabilities of data items in database applications by
adapting rather quickly to changes of access patterns [25].
However, it might not perform as satisfactory in this new
context of predicting the next viewer location. This is be-
cause the access probability to a data item is bounded be-
tween 0 and 1. EWMA is trying to incorporate the effect
of the change into the new estimate and the estimation er-
ror would normally not diverge. In this new context here,
we are using EWMA to predict a vector, whose direction
is an angle with an unbounded scope, i.e., the angle can
increase indefinitely, for example, through continuous rota-
tion in a circle. Thus, EWMA may not be able to cope with
the “non-stationary” changes. We need to explicitly cor-
rect the prediction with adjustment from residuals or error
predictions.

Let us denote the n'® movement vector be M, and the
predicted n + 1** movement vector be Mnt1. The residual
in each predication is &, = rit,, — M,. We consider the angle
between 7, and iy, denoted as ¢, = arg(in) — arg(My),

Server System Client System

Geometry Database Cache
Database Agent Agent
Server Network — Network Client

Manager Agent 7 Agent Manager

User Prefetching Display
Profiles Agent Driver

Figure 4: Architecture of the prototype.

where arg(m) is the argument of the vector m in a complex
plane. 7, can be predicted by rotating M, through an angle
of —¢pn, i.e., a multiplication by e ***. Since we do not really
know ¢,4+1 when we predict Mm,41, we must try to predict
¢nt1 as well. There can be different ways of predicting
¢n41 from the previous values of ¢;, namely, mean, window
and EWMA. Again, we propose to use EWMA to compute
the prediction of ¢; at each step as we compute é;. Thus,

¢n+1 = O{¢n =+ (1 — oz)qﬁn, and ﬁln+1 = ﬁln+16_l¢"+1 .

5 Implementation

We have developed a prototype of the proposed distributed
walkthrough system. The prototype is mainly implemented
using Java, due to its platform independence nature, ex-
cept for the Display Driver. The Display Driver is imple-
mented using Openlnventor, which would utilize the under-
lying graphics capability of the client, if available, for better
performance. This is also because when we started our im-
plementation work of the system, Java3D was not available.

5.1 Architecture

As mentioned previously, our distributed walkthrough sys-
tem is based on a client-server model. The architecture of
our prototype is therefore divided into two main parts, the
Client System and the Server System. The Client System
consists of 4 main components as shown in Figure 4. The
major functions of the components are as follows:

o Client Manager: It serves as the coordinator of all
other components at the Client System. All viewer
inputs, such as translation or rotation, are directed to
and handled by the Client Manager.

e Cache Agent: It controls all the local caches, includ-
ing the memory cache and/or the storage cache at the
Client System. Whenever the client receives data from
the server, the data would be cached via the Cache
Agent. The agent will perform cache cleanup at the
underlying cache(s) when necessary. The Cache Agent
also maintains a Score Table, containing the access
score (see Section 4) of each object in the local cache.

o Network Agent: It handles all the communications be-
tween the client and the server, and maintains the con-
nection between the client and the server once a con-
nection has been established between them. It also
handles all the object requests. The process is imple-
mented as a separate thread under the Client Manager
in order to reduce the response time.

o Dusplay Driver: 1t accepts input from the viewer and
generate output images to be displayed on the display
screen.

The Server System also consists of 4 main components.
Their major functions are as follows:

o Server Manager: It serves as the coordinator of all
other components at the server side and handles all
clients’ requests.

o Database Agent: It maintains the database of the vir-
tual environment, and sends object models in the form
of progressive meshes or progressive records to a client,
upon receiving the request for objects from the client.
To reduce the overhead incurred for determining the
set of cachable objects within a viewer scope, the Data-
base Agent maintains a Database Index Table. The
table is indexed based on the virtual coordinate and
a radius, which identifies the set of cachable objects
within the radius, centered at the coordinate.

o Prefetching Agent: It prefetches objects to clients based
on some historical movement vectors of the client in
the form of user profiles. These movement vectors are
used to predict the next position of the client. A num-
ber of prefetching methods are implemented including

mean, window, and EWMA.

o Network Agent: It handles all the communications be-
tween a client and the server, and maintains the con-
nection between them once a connection has been es-
tablished. It also handles all the object requests by
the client.

Figure 5 illustrates sample sessions with the prototype.
Figure 5a shows a scene in the virtual environment. Fig-
ure 5b illustrates the structure of the meshes for rendering.
Note that objects farther away are represented by meshes
with lower resolution. Figures 5¢ and 5d represent the scene
and mesh structure when the viewer moves forward, with an
increase in the resolution of the cow and the trees.

5.2 Client-Server Interaction

A connection-oriented protocol is used in the prototype. The
connection between the client and the server would be main-
tained once it has been established to prevent the extra
overhead incurred in further communications between the
client and the server. For connectionless protocol such as
HTTP, a connection between the client and server has to be
established every time before any data transmission. This
would increase the overhead and thus the response time to
the viewer.

When a client wants to connect to a server, the client
sends a NEW command, specifying the size of its scope and
the viewing angle. If the server accepts the client’s connec-
tion, the server replies with the assigned Client]D and other
parameters of the virtual environment to the client. As the
viewer moves or rotates within the virtual environment, the
client sends an ACK command to the server, specifying the
client’s updated location and viewing direction. The server
replies with an object ID list, specifying all cachable objects
that are within the new scope of the client and the optimal
resolution required for each object. If prefetching is used,
the 1Ds of the predicted objects would also be included in
the list. Upon receiving the object ID list, the client looks
up its cache via the Cache Agent to identify the cached and

Tt Pan Zoon =mEr|

a b

[TsasEEwE]

Tilt Pan Zoom [l
c d

Figure 5: Sample sessions with prototype.

uncached information. An REQ command will be sent to
the server, requesting progressive records and/or progres-
sive meshes of the cachable objects from the server. When
the client stops the walkthrough, a DONE command is sent
to the server, closing the connection.

5.3 Progressive Mesh Transmission

To transmit a progressive mesh to the client, the base mesh
is transmitted first as a single unit. The client reconstructs
the minimal resolution model of the object as it receives the
base mesh. Each subsequent progressive record is transmit-
ted in order. Each record stores information for splitting an
edge of the object model, thereby increasing the resolution of
the object model by a small amount. As an edge is inserted
or split in a local mesh, vertices might need to be divided as
well. This idea is illustrated in Figure 6. In Figure 6, as an
edge identified by the two vertices, Vparent and Vepiia, is in-
serted into a local mesh, some of the immediate neighboring
vertices of Vparens are divided as well. The new vertex Vepniig
becomes an immediate neighboring vertex of Vparen: while
some of the former neighbors of Vparent become the immedi-
ate neighbors of V.niia. To reduce the amount of information
needed to be maintained in each progressive record for such
a vertex division, a linked list for each vertex of an object
model 1s maintained at the client. The linked list points to
all immediate neighboring vertices for each vertex, ordered
in a clockwise direction.

V
right edge spit ’A right

WAV,

Figure 6: A progressive record stores information
for an edge split.

<\,

The progressive record for the edge split operation shown
in Figure 6 stores the (z,y,z) position of Venig, ie., the
vertex to be inserted, and the ID of the parent vertex, i.e.,
Voarent. Vparent will then join with Vipig to form the in-
serted edge. We also need to transmit the IDs of vertices,
Vierr and Viigne. They help to identify the locations where
the two new triangles are to be inserted to. The two triangles
are defined as Tieft = (Vparent, Venitd, Viepe) and Trigne =
(Venita, Vparent, Vrignt). The two vertices also help to di-
vide all the immediate neighboring vertices into two groups.

The data structure for our implementation of the progressive
mesh is shown in Figure 7.

Order of transmission

Edge Split ; Edge Split ,

Base Mesh ‘ Edge Split

‘Edge Split,.1

’ ID of Vepig ‘ X ‘ Y ‘ z ‘ ID 0f Vparent | 1D Of Vigq | 1D Of V igis

Figure 7: The data structure of the progressive
mesh for transmission.

6 Results and Discussions

We have conducted some preliminary experiments to quan-
tify the performance of MRM replacement scheme and the
effectiveness of various prefetching schemes via simulation
as well as on the prototype. The purpose of simulation is a
proof of concept, allowing us to experiment the behavior of
the mechanisms under diverse situations easily. The proto-
type provides a study under a real situation. We will first
present a simulated experiment to illustrate the general be-
havior of the caching and prefetching schemes, followed by a
more detail analysis of the performance of the mechanisms
using our prototype.

We characterize the performance of the caching and re-
placement schemes with two metrics: cache hit ratio and vi-
sual perception. Cache hit ratio measures the percentage of
bytes of the renderable objects, i.e., those within the view-
ing region, that could be retrieved from the local storage
cache of the client. A high hit ratio is important to reduce
reliance on network and to provide service during discon-
nection. Visual perception measures the relative degree (in
percentage) of image quality experienced by a viewer just
after the move. The visual perception of a cached render-

B,—B!\3
B—Oo) ,
where B, is the expected size of object o at its optimal res-
olution and B} is the size of the object currently cached.
This definition of visual perception is based on the fact that
when a viewer makes a move in the virtual environment,
s/he would experience a high visual perception if all ren-
derable objects could be seen instantaneously (from cache),
even at a coarse resolution. By contrast, a viewer would
experience a low perception if s/he needs to wait for a long
time before all renderable objects could be observed. A vi-
sual perception of 100% is assumed when the the cached
model could provide the optimal resolution.

able object, o, is modeled as a cubic function: 1—(

6.1 Experimental Environment

The same set of parameters are used in our experiments
under simulation and prototype, as listed in Table 1. In our
experimental environment, there are n virtual objects in the
database server. We focus on a single server and a single
client in our study here. The effect of the number of clients
on the performance of caching and prefetching schemes will
be reported in the future.

Notation Description
n Number of virtual objects
N Size of storage cache (percentage of database)
w Parameter for determining access score (fixed at 0.5)
Faisr Prefetching scheme for storage cache
W Window size
o Exponentially decreasing weight (fixed at 0.5)
P Moving patterns of the viewer

Table 1: Parameters listing for experiments.

The virtual environment is modeled as a 2000 x 2000 squ-
are units in size. The n virtual objects are distributed uni-
formly among the square units, each containing an average

of —="— objects. The viewer is assumed to reside at the

cenioe(;ooo%othe viewer scope. The viewing angle is set to be 120
degrees, i.e., 2?” The radius of the viewer scope is set to 10
units. Only storage cache at the client is considered in our
experiments. The cache size is equal to N% of the database
size. We experimented with different prefetching schemes,
including no prefetching (No Prefetch), Mean, Window, and
EWMA. No Prefetch forms a base case for comparison. We
experiment with four window size, W, ranging from 1, 3, 5,
and 7. We denote Window with window size, W, as Win-
W. We refer to EWMA with residual adjustment enabled
by EWMA-R, and EWMA with residual adjustment disabled
by EWMA-NR.

We experiment with three moving patterns, P, of a viewer,
as depicted in Figure 8. Each pattern contains a sequence
of movement steps. The first pattern models a constant cir-
cular translation pattern (CP). The viewer moves circularly
starting and ending at the same location. Each movement
step includes a translation of 150 units along the viewing di-
rection, followed by rotating the viewing direction through
an angle of 75, i.e., 12 degrees. At every position, the viewer
rotates by 7, i.e., 20 degrees. This models a situation
where a viewer explores the virtual objects around him /her
for every movement. The second pattern, called changing
circular pattern (CCP), models the same pattern as CP ex-
cept that the moving direction changes with an angle of
76+ 1.€., 10 degrees, after every 4 movement steps. Finally,
in the random moving pattern (random walk or RW), each
movement step is either a translation of arbitrary length or

a rotation of arbitrary angle.

Figure 8: Moving patterns: (a) CP, (b) CCP, and (¢) RW.

6.2 Experiments from Simulation

The purpose of our simulation is to study the performance
of the caching mechanism, with and without prefetching, on
various moving patterns. In our simulation model, there are
5000 virtual objects. Each object is modeled by a progres-
sive mesh, containing a base mesh and a list of progressive
records. The number of progressive records associated with
each object model follows a normal distribution with a mean
of 25,000 records and a standard deviation of 2,500 records.
FEach progressive record has a size of 40 bytes while each
base mesh has a size of 2KB. The database is approximately
5GB and the size of the storage cache is fixed at 1% of the
database.

(a) Hit Ratios (b) Visual Perception

Hit Ratios (%)
isual Perception (%)
8

2

7% BN Prefetch B Mean Owin-1 Owina S g
= Win5 owin7 BEWMA-NR OEWMAR

cp ccp RW cp cep RW
Viewer Moving Pattern

Viewer Moving Pattern

Figure 9: Performance from simulation.

The measurements of the metrics are depicted in Fig-
ure 9. We observe that even without prefetching, the caching
mechanism performs reasonably well, achieving a hit ratio
ranging from 79% to 83% (Figure 9a). With prefetching, the
hit ratios could be improved by up to 6%. We observe that
Mean is not very effective in predicting future movements,
performing similar to the base case, i.e., No Prefetch. Both
Window and EWMA perform equally well in improving the
hit ratios of the caching mechanism.

With respect to Window, a small window size results in
better performance under the CP and CCP moving patterns.
Under CP and CCP, the moving direction is always chang-
ing, very often with a constant angle. With a large window
size, aged moving vectors will contribute to the prediction of
the moving vector, introducing some noise in the prediction.
By contrast, under the RW moving pattern, each movement
step bears a high degree of randomness. The small window
does not capture enough information to predict the next
movement vector. Therefore, the performance with a small
window size is not as good as that with a large window size
under RW.

EWMA exhibits a similar behavior. EWMA-R performs
better under the CP and CCP moving patterns. This is
mainly because the angle deviation under these two mov-
ing patterns exhibit a well defined pattern and is thus pre-
dictable. Under the RW moving pattern, the angle deviation
does not exhibit a clear pattern and the residual correction
does not seem to yield any improvement.

6.3 Experiments from Prototype

In our prototype experiments, the server runs on an Ultra-
Sparc 2 station with 128 MB RAM. The client runs on an
SGI Indigo 2 station with 64MB RAM. We study the be-
havior of the caching and prefetching mechanisms under a
real system and compare the relative performance against
the simulation. Due to space limitation, we only present
two representative sets of experiments in this paper.

6.3.1 Experiment #1

Our first set of experiments resembles our simulated exper-
iment presented in Section 6.2. However, since running ex-

periments on a prototype is very time-consuming, we reduce
the number of objects, n, to 500 here. The average size of
each object is also reduced to 200KB. All other parameters
remain the same. We hope to be able to compare the gen-
eral behavior of the mechanism under a real system with
simulated behavior with this adjustment.

(a) Hit Ratios (b) Visual Perception

Hit Ratios (%)

80 BNo Prefetch BMean OWin-t OWin3 S
mWins awin7 BEWNA-NR OEWMA-R

cp cep RW cp ccp RW

Viewer Moving Pattern Viewer Maving Pattern

Figure 10: Performance from Experiment #1.

The measurements of the metrics are depicted in Fig-
ure 10. For the RW moving pattern, the general behavior of
the performance from the prototype is similar to that from
the simulation. The only difference is a slight increase in
hit ratios and visual perception by a few percents in the
experiment, across all prefetching schemes.

For other moving patterns, the improvement in hit ratios
from EWMA seems to be smaller than those brought about
by simulation. This is perhaps due to the object distribution
in the experimental environment. We are still in the process
of testing different object distributions with repetition, and
will report our findings in the future. The impact on visual
perception is similar to hit ratios, but at a smaller scale.

6.3.2 Experiment #2

In our second experiment, we study the effect of cache size on
the performance of the caching and prefetching mechanisms.
To obtain a better understanding on the effect of cache size,
we further measure the average response and latency times.
Response time refers to the amount of time spent from the
moment a client initiates a query for renderable objects to
the moment when the optimal resolutions of all renderable
objects are available. Latency time refers to the amount
of time spent between the initiation of a query to the time
the base meshes of renderable objects are available at the
client. It measures the observable delay experienced by a
viewer when the viewer makes a move.

In this experiment, n is again fixed at 500 objects. The
moving pattern is fixed at CP. The size of the storage cache,
N, ranges from 0% to 2% of the database. Other parameters
remain the same. Figure 11 depicts the results, with the
second row showing the response and latency times of the
experiments. With a cache size of only 0.5% of that of the
database, it is able to reduce response and latency times of
the application to a quarter and a half respectively, even
without prefetching.

We observe an increase in hit ratios and visual perception
when the cache size increases as shown in Figure 11. It is
simply because a large cache size is able to hold more object
models; thus, the chance of hitting an object model in the
local cache becomes higher. The improvement in both hit
ratio and visual perception from N = 0.5% to N = 1% is
very significant. However, the improvement seems to level
off when cache size increases beyond 2%. EWMA is also
performing more satisfactory, yielding similar performance
as in the simulation.

With respect to response and latency times, they are
not as stable as hit ratio and visual perception, due to their
heavy dependency on the available network bandwidth when

(a) Hit Ratios (b) Visual Perception

Hit Ratios (%)
3

—6—No Prefetch —0— Mean

Visual Perception (%)

o 0s 1 15 2 o 0s 1 15 2
Cache Size (%) Cache Size (%)

() Response Times (d) Latency Times

Response Times (sec.)
Latency Times (sec.)

10 =] 3
o 0s 1 15 2 o 0s 1 15 2
Cache Size (%) Cache Size (%)

Figure 11: Performance from Experiment #2.

the prototype is running. However, a general observation
can still be drawn about their relative performance. With
caching, latency time is usually in the order of a few sec-
onds. Compared with other prefetching schemes, the EWMA
schemes generally result in a smaller access latency. We also
observe that prefetching leads to a small improvement in la-
tency. The response time is about two to four times of the
latency, i.e., from 10 to 20 seconds with a cache size of 1%
for all movement patterns, as in Experiment #1, and higher
with a smaller cache size, as depicted in Figure 11c. How-
ever, when compared with no caching, caching alone could
improve the response and latency times of the walkthrough
application by quite a few times (see Figures 11c and 11d).
Prefetching also leads to improvement in response times.
Finally, with an increasing cache size, improvement to re-
sponse and latency times is also observed.

7 Conclusions

In this paper, we have described our implementation of a vir-
tual walkthrough system. We describe technical challenges
that need to be addressed in order to improve the perfor-
mance of such kind of applications. As one alternative to
improve the performance, we propose a caching mechanism
that employs the local storage of a client machine to hold
remote objects residing at the database server. The caching
mechanism is further complemented by a prefetching mech-
anism to predict objects accessed in future. The prediction
is based on the semantics of virtual walkthrough applica-
tion. The various prefetching methods are investigated for
performance and are shown to be effective.

We are currently conducting more experiments to study
the performance of the caching and prefetching mechanism
under different situations. In particular, we are studying the
effect of multiple clients on the performance of the caching
mechanism. We are also investigating the situation when
objects are dynamic, 1.e., an object can move within the
virtual environment. This further complicates our caching
mechanism as the updated location of each dynamic object
needs to be reflected in the object model cached in each
client in a consistent manner.

Acknowledgements

This research is supported in part by the PolyU grant num-
bers 350/960 and 351/217.

References

(1]

[13]

[14]

[15]

[16]

(18]

[19]

[20]

J. Calvin, A. Dicken, B. Gaines, P. Metzger, D. Miller, and
D. Owen. The SIMNET Virtual World Architecture. In Pro-
ceedings of IEEE Virtual Reality Annual International Sym-
posium, pages 450-455, 1993.

M. Carey, M. Franklin, M. Livny, and E. Shekita. Data Caching
Tradeoffs in Client-Server DBMS Architectures. In Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 357-366, 1991.

C. Carlsson and O. Hagsand. DIVE - a Multi-User Virtual Re-
ality System. In Proceedings of IEEE Virtual Reality Annual
International Symposium, pages 394-400, 1993.

B. Y. L. Chan, A. Si, and H. V. Leong. Cache Management
for Mobile Databases: Design and Evaluation. In Proceedings
of IEEE International Conference on Data Engineering, pages
54-63, February 1998.

J. Chim, M. Green, RW.H. Lau, HV. Leong, and A. Si.
On Caching and Prefetching of Virtual Objects in Distributed
Virtual Environments. In Proceedings of ACM Multimedia,
September 1998.

J. Chim, R-W.H. Lau, H.V. Leong, and A. Si. Multi-resolution
Cache Management in Digital Virtual Library. In Proceedings of
IEEE Advances in Digital Libraries Conference, pages 6675,
April 1998.

F. Crow. A More Flexible Image Generation Environment. In
ACM Computer Graphics (SIGGRAPH’82), pages 9-18, July
1982.

M. DeHaemer and M. Zyda. Simplification of Objects Ren-
dered by Polygonal Approximations. Computers & Graphics,
15(2):175-184, 1991.

W. Effelsberg and T. Haerder. Principles of Database Buffer
Management. ACM Transactions on Database Systems, pages
560-595, December 1984.

J. Falby, M. Zyda, D. Pratt, and R. Mackey. NPSNET: Hierar-
chical Data Structures for Real-Time Three-Dimensional Visual
Simulation. Computers & Graphics, 17(1):65-69, 1993.

M. Franklin, M. Carey, and M. Livny. Global Memory Man-
agement in Client-Server DBMS Architectures. In Proceedings
of International Conference on Very Large Databases, pages
596-609, 1992.

C. Greenhalgh and S. Benford. MASSIVE: a Distributed Virtual
Reality System Incorporating Spatial Trading. In Proceedings of
the International Conference on Distributed Computing Sys-
tem, pages 27-34, 1995.

H. Hoppe. Progressive Meshes. In ACM Computer Graphics
(SIGGRAPH’96), pages 99-108, August 1996.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuet-
zle. Mesh Optimization. In ACM Computer Graphics (SIG-
GRAPH’93), volume 27, pages 19-26, August 1993.

V. i§ler, R.W.H. Lau, and M. Green. Real-Time Multi-
Resolution Modeling for Complex Virtual Environments. In Pro-
ceedings of ACM Symposium on Virtual Reality Software and
Technology, pages 11-20, July 1996.

R.W.H. Lau, M. Green, D. To, and J. Wong. Real-Time Continu-
ous Multi-Resolution Method for Models of Arbitrary Topology.
Presence: Teleoperators and Virtual Environments, pages 22—
35, February 1998.

R.W.H. Lau, D. To, and M. Green. An Adaptive Multi-
Resolution Modeling Technique Based on Viewing and Anima-
tion Parameters. In Proceedings of IEEFE Virtual Reality An-
nual International Symposium, pages 20—-27, 1997.

M. Macedonia, M. Zyda, D. Pratt, P. Brutzman, and P. Barham.
Exploiting Reality with Multicast Groups: A Network Architec-
ture for Large-scale Virtual Environments. In Proceedings of
IEEE Virtual Reality Annual International Symposium, pages
2—-10, March 1995.

B. Mannoni. A Virtual Museum. Communications of the ACM,
40(9):61-62, 1997.

C. Min, M. Chen, and N. Roussopoulos. The Implementation
and Performance Evaluation of the ADMS Query Optimizer: In-
tegrating Query Result Caching and Matching. In Proceedings of
International Conference on Extending Database Technology,
pages 323—336, 1994.

[21]

[22]

[24]

[25]

[26]

(27]

T. Ohshima, H. Yamamoto, and H. Tamura. Gaze-Directed
Adaptive Rendering for Interacting with Virtual Space. In Pro-
ceedings of IEEE Virtual Reality Annual International Sym-
posium, pages 103-110, July 1996.

1.S. Pandzic, T.K. Capin, E. Lee, N.M. Thalmann, and D. Thal-
mann. A Flexible Architecture for Virtual Humans in Networked
Collaborative Virtual Environments. Eurographics, 16(3):177—
188, 1997.

D. Schmalstieg and M. Gervautz. Demand-Driven Geometry
Transmission for Distributed Virtual Environments. In Proceed-
ings of Eurographics 96, pages 421-432, 1996.

W. Schroeder, J. Zarge, and W. Lorensen. Decimation of Tri-
angle Meshes. In ACM Computer Graphics (SIGGRAPH’92),
volume 26, pages 65-70, July 1992.

A.Siand H. V. Leong. Adaptive Caching and Refreshing in Mo-
bile Databases. Personal Technologies, 1(3):156-170, September
1997.

A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Sys-
tem Concepts. McGraw-Hill, 1996.

G. Singh, L. Serra, W. Png, and H. Ng. BrickNet: A Software
Toolkit for Network-Based Virtual Worlds. Presence: Teleoper-
ators and Virtual Environments, 3(1):19-34, 1994.

B. Watson, N. Walker, and L. Hodges. Effectiveness of Spatial
Level of Detail Degradation in the Periphery of Head-Mounted
Displays. In ACM CHI’96, pages 227-228, April 1996.

