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Abstract

Advances in networking technology and the establishment
of the Information Superhighway have rendered the virtual
library a concrete possibility. We are currently investigating
user experience in walking through a large virtual environ-
ment in the context of Internet. This provides users with
the ability to view various virtual objects from different dis-
tances and angles, using common web browsers. To deliver a
good performance for such applications, we need to address
several issues in different research disciplines.

First, we must be able to model virtual objects effec-
tively. The recently developed techniques for multi-resolution
object modeling in computer graphics are of great value
here, since they are capable of simplifying the object mod-
els and therefore reducing the time to render them. Second,
with the limited bandwidth constraint of the Internet, we
need to reduce the response time by reducing the amount of
data requested over the network. One alternative is to cache
object models of high affinity. Prefetching object models by
predicting those which are likely to be used in the near fu-
ture and downloading them in advance will lead to a similar
improvement. Third, the Internet often suffers from discon-
nection. A caching mechanism that allows objects to be
cached with at least their minimum resolution will be useful
to provide at least a coarse view of the objects to a discon-
nected viewer for improved visual perception. In this paper,
we propose a multi-resolution caching mechanism and inves-
tigate its effectiveness in supporting virtual walkthrough ap-
plications in the Internet environment. The caching mecha-
nism is further complemented with several object prefetching
mechantsms for predicting future accessed objects. The per-
formance of our proposed mechanisms and their feasibilities
are quantified via simulated experiments.

1 Introduction

Recent establishment of the World Wide Web infrastruc-
ture [2] has brought about a revolutionary change to the
organization and presentation of information. The technol-
ogy has allowed multi-media information to be accessed on

line in a user-friendly manner across geographical bound-
aries. Of the numerous emerging multi-media applications,
we envision a particular kind of application, the virtual walk-
through application [25], to be of interest.

In a virtual walkthrough application, a user, with access
to the Internet, could explore a specific place of interest
without having to travel physically. The place of interest
will be modeled as a virtual world, containing a vast number
of virtual objects. Sample applications of this sort include
virtual museum, virtual library, virtual university, etc. [25].

Employing a standard client-server architecture, infor-
mation of virtual objects, including their locations, sizes,
orientations, and shapes, will be maintained in a central
database server. When a viewer (user) walks through a vir-
tual world, information of the virtual objects located within
a visible distance from the viewer will be conveyed to the
client machine of the viewer. The information will then be
processed and rendered into images to be viewed by the
viewer. Peripheral devices such as head-mount displays or
conventional color monitors could be employed to view the
rendered images. As the viewer moves within the virtual
world, the relative locations and orientations of the vir-
tual objects may change with respect to the position of the
viewer. Such changes of information should be reflected
into the rendered images in a timely fashion. In general,
the virtual objects could be dynamic as well, changing their
locations and orientations within the virtual environment.
However, in this paper, we only focus on a virtual environ-
ment where virtual objects are static. The ultimate goal
is to provide a good performance of the application, both
in terms of responsiveness and resolution, under the exist-
ing constraints of relatively low Internet bandwidth and the
large memory demand of virtual objects.

We are addressing several issues in this research. First,
virtual objects must be modeled in a compact form. This
can reduce not only the amount of storage space needed,
but also the time required to transfer the objects from the
server to a client under the scare Internet bandwidth. A
compact modeling of virtual objects also has the benefit of
fast retrieval from secondary storage, both at the server and
at a client. However,; over-compact modeling of virtual ob-
jects will increase the overhead in compressing and decom-
pressing the objects. A mechanism that can reduce both
the storage space and transmission overhead, but yet pro-
vide a reasonable compressing and decompressing efficiency
is required. The recently developed multi-resolution object
modeling techniques in computer graphics [17, 21] could be
employed here. The techniques allow progressive transmis-
sion of objects with only minimal overheads.



Second, with the limited bandwidth of the Internet, we
need to reduce the amount of data requested over the net-
work for faster response time. This can be achieved by both
caching and prefetching mechanisms. A caching mechanism
allows a client to utilize its memory and local storage to
cache currently visible objects that are likely to be visible
in the near future [13]. A prefetching mechanism allows a
client to predict objects that will likely be visible in the fu-
ture and obtain the objects in advance. A good caching
mechanism should retain objects with high affinity while a
good prefetching mechanism should predict those objects
which will most likely be used.

Third, the Internet often suffers from various degrees of
disconnection. The local storage cache of a client can be
used to provide partial information to support a certain de-
gree of disconnected operation. For example, a viewer may
still be able to see a coarse resolution of objects in the virtual
world if the minimal approximated models of the objects are
cached. Even if only the coordinates of the virtual objects
are cached, a viewer could still be aware of the existence of
the objects in the virtual world.

In this paper, we propose a storage caching and prefetch-
ing mechanism that allows virtual objects from a remote
database server to be cached in a client’s local storage at var-
ious resolutions. We term our mechanism, multi-resolution
caching mechanism, and attempt to quantify the perfor-
mance via simulated experiments. The rest of the paper
is organized as follows. Section 2 presents a survey on rele-
vant research. Section 3 presents an overview of our method
and contrasts the differences of our approach with previous
ones. In Section 4, we present our multi-resolution modeling
technique. Section 5 presents the multi-resolution caching
and prefetching mechanism. In Section 6, we present and
discuss the performance of our mechanism via several sim-
ulated experiments. Finally, we conclude our paper with a
discussion on possible future work.

2 Related Work

In a client-server database environment, to combat the net-
work transmission latency, a multi-level caching mechanism
could be established by caching database objects from the
server in a client’s local memory and/or local storage. A
storage cache also has an advantage of persistence. When
disconnected from the server, a client can still operate on
the database objects available in its local storage.

In a conventional client-server database environment, data
objects are usually transferred from the database server to
a client on a per-page basis [4, 12, 13]. This is primarily be-
cause the server’s storage is also page-based. The overhead
for transmitting one item or a page is similar. In general,
a page-based mechanism requires a high degree of locality
among the items within each page to be effective [10].

In a virtual walkthrough environment, virtual objects
are represented using object models and are usually very
complex and large in size, occupying possibly multiple data
pages. The overhead required to transfer an object model
(or simply object) in its entirety via the narrow bandwidth
Internet is very high. Furthermore, we might not always
need to render an object at its full resolution (see Section 5).
Therefore, there will be situations that we need to transfer
less than a page of information and there also exists situa-
tions that we need to transfer more than a page of informa-
tion. A more dynamic granularity for caching is needed in
this virtual walkthrough environment.

To simplify the architectures, most existing virtual walk-
through systems are replication-based approach [1, 3, 5, 14,
15, 28]. The geometry database is first transferred to the
client machine (or the client site where a high speed network
connects the client and the local geometry database server).
In an Internet environment, this approach is possible only if
either the size of the geometry database is small or the client
can provide unbounded disk storage and wait for a possibly
very long pre-loading time, However, a more realistic situa-
tion is that the available storage for caching and the avail-
able pre-loading time are limited [26]. A different approach
to database replication by transmitting the object models
on demand to the clients during the walkthrough [23, 29] is
a better alternative in this Internet environment. In [34], a
similar approach is adopted by transmitting program codes
for constructing the object models at the client. These ap-
proaches shorten the pre-loading time.

2.1 Multi-Resolution Modeling

In a virtual walkthrough application, rendering a complex
object at a client is expensive. We notice that from the
perspective of a viewer in the virtual world, distant objects
occupy smaller screen areas than nearby objects after pro-
jection. Most of the details of distant objects are actually
not visible to the viewer. Hence, it is only necessary to
represent an object at the resolution just high enough for
the given viewing distance. This could reduce the transmis-
sion delay and the storage required to hold the objects in a
client’s local storage. This could also reduce the rendering
overhead. To optimize both the transmission delay and the
rendering performance, we employ multi-resolution model-
ing techniques here to study the effect of caching objects
in a client at various degrees of granularity. In brief, our
multi-resolution mechanism caches and prefetches a nearby
object at a higher resolution and a distant object at a lower
one.

There are many methods developed for generating multi-
resolution models [9, 18, 30, 35]. However, most of them
focus on the accuracy of the simplification, and hence, are
slow. A popular method to overcome the performance lim-
itation is called the discrete multi-resolution method. This
method pre-generates a few key models of an object at dif-
ferent resolutions. During run-time, the object’s distance
from the viewer determines which model to use for render-
ing [8]. Although this method is fast and simple, it has two
major limitations. First, when the object’s distance from
the viewer crosses the threshold distance, there is a sudden
change in model resolution and an objectionable visual dis-
continuity effect can be observed. In [35], Turk proposes
to have a transition period during which a smooth interpo-
lation between the two successive models is performed to
produce models of intermediate resolutions. This method,
however, further increases the computational cost during the
transition period because of the need to process two mod-
els at the same time. Second, because all the key models
are independent of each other, the overall amount of infor-
mation needed to represent a particular object is increased
and is dependent on the total number of key models used.
In a distributed environment, this will increase the network
traffic and hence reduce the availability of objects.

A method referred to as progressive meshes was recently
proposed for progressive transmission of multi-resolution ob-
ject models [17]. The method assumes that the object is
composed of triangles, which is commonly used for repre-
senting 3D objects. It is based on two operators, edge col-



lapse for reducing model resolution, and edge split for in-
creasing model resolution. Each object is modeled as an or-
dered list. The list begins with a minimal resolution model
of the object, also represented in the form of a triangle
model. Each subsequent record in the list stores informa-
tion of an edge split. The structure of a progressive mesh
is shown in Figure 1. If we apply the information stored in
each of the records to the object in order, the object will
gradually increase in resolution until it reaches the maxi-
mum resolution, when all the records in the list are applied.

triangle model | Ry | R, | Rn-1 | Rn
. N —
Vo VT
base mesh progressive records

Figure 1: The structure of a progressive mesh.

To create the list, the method begins with the highest
resolution model of the object. A triangle edge located in
a locally flat region is selected, and collapsed into a single
point. Such a collapse will result in the removal of two trian-
gles from the model. The information related to this single
edge collapse is packaged in a single record and placed at the
end of the list. This edge collapsing operation is continued
and the corresponding records are inserted in the list in a
reverse order until the model is reduced to its minimal reso-
lution. This minimal resolution model is then added to the
beginning of the list to form the complete list. This list is re-
ferred to as the progressive mesh, and the minimal resolution
model is referred to as the base mesh. Each of the records in
the simplification list is known as a progressive record. We
have recently developed a similar method [19, 21].

2.2 Replacement and Prefetching Techniques

In [11], various cache replacement policies have been pro-
posed and their suitabilities in a conventional database sys-
tem have been examined. These policies are all page-based,
due to the logical mapping made by the database or oper-
ating system to the physical storage. In general, the per-
formance of individual replacement policies is sensitive to
the characteristics of queries initiated and the application
environment. A general conclusion on the performance of
the replacement policies cannot be made. In practice, the
replacement policy is often approximated by the least re-
cently used (LRU) policy in conventional caching [4, 13, 33].
In [31], it was shown that LRU policy is not appropriate in a
context where the objects accessed by a client might change
over time. Rather, the semantics of data access is more
important in defining the replacement policy. We, there-
fore, need to develop a more appropriate replacement policy
based on the semantics of accesses in a walkthrough envi-
ronment. It was also noticed in [6] that prefetching could
be very beneficial in improving the performance of database
applications if the prefetching is performed intelligently.

3 Method Overview

In our walkthrough application within the Internet environ-
ment, each virtual object, o, is stored in the database server
at its maximum resolution, 7@0, in the form of a progres-
sive mesh. Since the multi-resolution method we use here
is based on edge collapse, the maximum resolution R, of o
is actually reflecting a count of the total number of edges
which can be collapsed from its maximum resolution. Each

object_will also have a base mesh at its minimum resolu-
tion, R,. We say that the base mesh R, of o represents o
at resolution level 0, denoted as L,, which has a value of
0. Each progressive record will increase the resolution level
by one. Therefore, the maximum resolution Ro represents o
at the highest resolution, denoted as ﬁo, when all progres-
sive records are applied and Lo is the number of progressive
records.

Each object and viewer is defined with a scope. We de-
note the viewer scope for viewer, V', by Ov and the object
scope for object, o, by (O,. Intuitively, an object scope of an
object defines the area within which the object will be vis-
ible. It is roughly proportional to it size. The viewer scope
defines the depth of sight of the viewer. A viewer can see an
object only when the viewer scope intersects with the object
scope. The goal is to eliminate the effect of sudden appear-
ance of large objects and to reduce unnecessary overhead for
transmitting and rendering small objects.

The interaction between a viewer and the virtual world
is illustrated in Figure 2. In addition to the viewer scope,
each viewer, V| is also associated with a viewing direction,
vy, and a location, locy. The viewing direction defines the
line of sight of the viewer. Given the location of a viewer, all
virtual objects whose object scopes intersect with the viewer
scope will be considered for rendering. We refer to these
objects as renderable objects. The viewing region defines the
viewing angle of the viewer and is a sub-space of the viewer
scope. All renderable objects within the viewing region are
visible to the viewer if they are not obscured by another
object. We refer to these objects as wisible objects.

object scope

viewing region object scope

viewer scope

Figure 2: Organization of the virtual world.

If the two scopes overlap, we need to determine the ap-
propriate resolution of the object for rendering. We note
that the relationship between the rendered resolution of an
object and the perceived image quality (visual perception)
of the object by the viewer is not linear. We denote such
a relationship in Figure 3. As shown in the diagram, each
object will be rendered at least at its minimum resolution
when it is rendered using its base mesh only. Further notice
that each object is also associated with an optimal resolu-
tion. If the object is rendered at a resolution higher than its
optimal resolution, the additional details will not be easily
noticeable to the viewer. Rendering an object higher than
its optimal resolution is therefore a waste of resources. By
contrast, if the object is rendered at a resolution lower than
this optimal resolution, the visual perception experienced
by a viewer drops rapidly. It is therefore, preferable to ren-
der an object at its optimal resolution in order to strike
a balance between rendering efficiency and visual percep-
tion. This optimal resolution of an object is defined as a
percentage of the its maximum resolution, i.e., the number
of progressive records, and is determined according to the



object distance from the viewer and the angular distance of
the object from the viewer’s viewing direction, i.e., line of
sight (see Section 4). We denote the optimal resolution of
an object, o, by R, and the corresponding resolution level
by Lo.

visual
perception
zero i i : model
resolution  minimal optimal maximum resolution
resolution resolution  resolution

Figure 3: The effect of model resolution on visual perception
of an object on the viewer.

During the walkthrough, we continuously determine those
objects in the virtual environment whose scopes overlap with
the viewer scope, i.e., the renderable objects. For each of
those objects, the object model at its optimal resolution
will be transmitted to the client if it is not already cached
in the local storage. When transmitting the models from
the server to a client, those for objects within the viewing
region are transmitted first, followed by the transmission
of those outside the viewing region. The received models
will be cached in the client’s local storage. If there is not
enough cache storage, we will throw away some progressive
records of some object models that are not likely accessed
in the near future in order to accommodate the new mod-
els, i.e., we try to decrease the resolution of some existing
cached objects. The identification of victim objects is based
on their probabilities of being viewed at higher resolution
in the future, rather than adopting the conventional LRU
scheme (see Section 5).

We also attempt to further improve the performance of
the walkthrough application by having the server to prefetch
objects which will most probably be accessed in the near fu-
ture to the client. Given the current location and viewing
direction of a viewer, the database server predicts the next
location and viewing direction of the viewer based on his/her
past movement profile. Models of objects whose scopes over-
lap with the viewer scope at the predicted location will be
transmitted at their optimal resolutions to the client as well.

The advantages of our method can be summarized as
follows:

e In [29], discrete multi-resolution method is used for
model transmission. Redundant information will have
to be sent through the network, when multiple mod-
els of the same object at different resolutions need to
be transmitted. Our method applies the progressive
mesh technique for model transmission. No redundant
information needs to be sent across the network.

e The importance of an object is calculated based not
only on the distance of the object from the viewer,
but also on the size of the object concerned and the
resolution of the viewing device.

e Our caching mechanism differs from conventional cach-
ing mechanisms [4, 13, 33] in that objects could be
cached at multiple degree of granularity. Replacement
is also based on object access patterns rather than
adopting the conventional LRU scheme.

e We further improve the performance of the walkthrough
application by predicting the future movement of the
viewer and prefetching objects in advance.

4 Multi-Resolution Modeling Technique

4.1 Object Scope

In order to render an image representing what the viewer is
supposed to see during a walkthrough, the objects that are
visible to the viewer at each frame need to be determined.
To minimize the number of objects needed to be handled,
it is proposed that the environment be divided into regions
in [14, 15]. Objects that are visible to each of the regions
are precomputed. The list of potentially visible objects is
readily available during run-time by determining the region
that the viewer is located. The limitation of this method,
however, is that the computational cost of updating the lists
during run-time can be high if the objects in the environ-
ment may freely move around.

A different approach is to consider the area of interest
(AOI) of the viewer [12, 24, 29]. If an object falls inside
the AOI of the viewer, the object is considered visible to
the viewer. Otherwise, the object is considered too far to
be visible. Although these methods can quickly eliminate
invisible objects, they do not consider the sizes of the ob-
jects. Hence, a mountain located just outside the AOI of the
viewer may still be visible to the viewer, but is considered
as invisible, while a tiny object such as a book located just
inside the AOI of the viewer is unlikely to be visible to the
viewer, but is considered for visibility. The former situation
may result in a sudden appearance of a large object, and the
latter situation may result in a waste of processing time.

To overcome this limitation, we generalize the AOI con-
cept to both viewers and objects. We call them the viewer
scope and the object scope. The definition of the viewer scope
is similar to the definition of the AOI. A viewer scope indi-
cates the depth of sight of the viewer, i.e., how far the viewer
can see. A viewer with a good eye-sight or equipped with
a special device may be able to see objects that are further
away, and therefore may be assigned with a larger scope. A
short-sighted viewer may only be able to see nearby objects,
and therefore may be assigned with a smaller scope. The
definition of the object scope is different. An object scope
indicates how far the object can be seen. A large object has
a larger scope and a small object has a smaller scope. An
object may be visible to a particular viewer only when its
scope overlaps with the viewer scope. When the two scopes
overlap, the distance between the object and the viewer, and
the angle of the object from the viewer’s viewing direction
are used to determine the optimal resolution of the object.
Obviously, a viewer may also be considered as an object
and assigned with an object scope in addition to the viewer
scope. This object scope of the viewer will define how far
the viewer can be seen by another viewer within the same
virtual environment. This approach is somewhat similar to
the one proposed by [16].

In general, the size of an rendered object from a view-
point might be significantly different from that for another
viewpoint such as a long pillar object. Hence, the size of the
scope for an object at different viewpoint might be different
as well. However, defining a scope at such a fine granular-
ity would result in very high computation overhead when
identifying renderable objects. We, therefore, simplify the
definition of a scope (viewer or object) to a circular region
in our implementation. Each scope is centered at the center



of gravity of the object or viewer, and is characterized by a
radius. We denote the radius of the object scope for object
o, i.e., Qo, as 7o, while the radius of the viewer scope for
viewer V, ie., Qv, as 1oy -

4.2 The Optimal Resolution of an Object Model

The optimal resolution of an object model can be defined
according to the visual importance of the object to a viewer.
In [22], we have identified several factors that may affect
the visual importance of an object. Here, we only consider
two of those factors, which are relevant to the context here.
The first one is the distance factor. If an object is far away
from the viewer, the object may be considered as visually
less important.

The second factor is the line of sight. Studies have shown
that when an object is located outside the line of sight, the
viewer is unable to perceive much detail of the object [27,
36]. Degradation of peripheral visual detail can improve
rendering performance and reduce perceptual impact. There
are many eye tracking systems available for detecting line of
sight [20]. Since most of these systems are still too expensive
for the general public, some applications simply assume that
the viewer’s line of sight is always at the center of the screen.

Figure 4 depicts the visual importance of an object, o,
to a viewer, V. In the figure, D, v indicates the current
distance of the object from the viewer, while D, v maez i
the distance between the object and the viewer when their
scopes just overlap. Hereafter, we will consider in the con-
text of viewer V' and the subscript V' can be dropped if the
context is clear. Since a scope is defined as a circular region,
D, maz is equal to the sum of the radii of the viewer scope
and the object scope. The angular distance of the object
from the viewer’s line of sight, i.e., its viewing direction, ¥y,
is denoted as 6,,1 or simply 6, (—7 < 0, < 7). The visual
importance of o, i.e., I, to a viewer can be defined with the
following formula:

D —Dy.» _
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where K, is a constant for adjusting the decrement rate of
object o due to the increase in 6,. In our implementation, we
do not want the line of sight factor to dominate the distance
factor. Hence, we use a small value of K,. Notice that
0<I,<1.

object scope

viewer scope object o

object scope just
overlaps with
viewer scope

viewer Ve
Domax "/

object o
object scope

Figure 4: Visual importance of an object to a viewer in a
virtual environment.

The optimal resolution of object o is defined as I, frac-
tion of the number of progressive records. Notice that when
the object scope touches the perimeter of the viewer scope,
D, is equal to Dg,maz and I, becomes 0. The object will
be rendered using its base mesh only. As the object moves
closer to the viewer or to the viewer’s line of sight, the res-
olution level of the object increases.

5 Multi-Resolution Caching Mechanism

Multi-resolution modeling allows the database server to trans-
mit an object model at the optimal resolution for rendering.
This could save the scarce Internet bandwidth from trans-
mitting details of an object too small to be visible to the
viewer. To further reduce the dependency on the Internet to
reduce transmission delay, a caching and prefetching mech-
anism is needed to retain objects of high affinity and predict
those that will most likely be accessed in the near future.
Notice that memory caching at a client can be transparently
manipulated by the local operating system, in the form of
virtual memory [32]. The only concern with us here is the
utilization and management of the storage, i.e., local disk.

5.1 The Cache Model

When a viewer, V', moves within the virtual world, its client
machine, C, will transmit the current viewing direction, ¥y,
and the current location, locy, of V' to the server. This mes-
sage could be treated as a query to the geometry database
server, requesting for all renderable objects, including the
prefetched ones.

While the database server is processing the query, the
client C will concurrently identify the cached objects that
are renderable from its local storage cache. Notice that each
cached object, o, is associated with a resolution, R/, indi-
cating the current highest possible resolution of the model
available for rendering. This resolution level depends on the
number of progressive records, £ < ﬁo, cached in C. C
would then submit an existent list to the server, containing
a list of (o, £) pairs. This list informs the database server
about those renderable objects that are cached in C’s stor-
age and their maximum renderable resolution levels. Those
renderable objects whose L, > £, do not need to be trans-
mitted to the client as the client is able to render at the
optimal resolution, R,, from locally cached data. On the
other hand, those renderable objects not cached in C or
those which do not have sufficient records for the required
resolution will have to be transmitted to the client. A result
list of o in the form of (o, progressive mesh) will be trans-
mitted from the server. The progressive mesh only contains
enough progressive records to define the optimal resolution,
and it might or might not include the base mesh, depending
on whether the object is partially cached in the client.

Upon receiving the result list from the server, C might
cache the objects in its local storage. If the storage is ex-
hausted, a replacement scheme will be invoked to identify
the victim objects to be discarded to accommodate the in-
coming objects. For each virtual object, o, an access score
S, indicating the prediction of its future access probability
is determined. The higher is the access score, the higher
is the probability that o will be accessed again soon. If a
new object has an access score higher than the lowest access
score of some currently cached objects, the storage space of
some of the cached objects will be reclaimed and allocated
to accommodate the new object.

5.2 Replacement Mechanism

We employ the Most Required Movement (MRM) replace-
ment technique in defining the access score for each object.
The scheme is based on the observation that the further an
object is from the viewer, the lower the resolution it can be
rendered and the longer it will take for the viewer to move
to view the object in greater detail. Consequently, its prob-
ability of having it rendered at a higher resolution and hence



its value of being cached in the storage are lower. Similarly,
the larger is the angle between an object and the viewer’s
line of sight, the lower is the resolution required and the
longer it will take for a client to rotate to view the object
directly in front. The probability of being rendered at a
higher resolution and its value of being cached in the stor-
age are also lower. Preliminary experiments have shown that
such a replacement scheme outperforms traditional LRU re-
placement scheme [7]. We investigate the effectiveness of
MRM in more detail here, with consideration of the viewer
and object scope information.

There can be different formula to calculate the access
score, S,,v, for an object, o, with respect to a viewer, V.
Since we would like our scheme to have as few parameters
to be adjusted as possible, we define the access score by a
linear function of the distance between o and V', D,, and the
angular distance between o and vy, 6,. The access score is
thus defined using only one single adjustable parameter, w
0<w<1):

D, —ro,
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When the object with the lowest access score, o, is se-
lected for replacement, we will not remove the whole object
from the storage cache immediately. Rather, its extra reso-
lution detail, R}, will be reduced to its optimal resolution,
Ro, by removing all the extra progressive records. This will
make room for the incoming objects. If there is still not
enough room to accommodate the new objects, the object
with the next lowest access score will be selected for re-
placement. Again, all its extra progressive records will be
removed. This process will be iterated until enough room is
allocated for all new objects.

When there is still not enough room to accommodate
the new objects even after all cached objects have been re-
duced to their optimal resolutions, all progressive records of
objects with the lowest access score will be removed from
the storage cache, leaving only the base mesh of the ob-
ject at its minimum resolution, R,. Again, this process will
be iterated for every currently cached object until there is
enough room for all new objects. Finally, the base mesh of
the object with the lowest access score will be removed if
there is still not enough room after removing all progressive
records of all cached objects. This process will be iterated
until enough room is allocated for all new objects.

This multi-resolution replacement scheme tries to keep a
coarse resolution of an object in a client’s storage as much as
possible. This provides a viewer with a much better visual
perception since all or most of the visible objects could be
seen instantaneously, even though they may only be at a low
resolution.

5.3 Prefetching Mechanism

To enable prefetching, the server maintains a separate pro-
file for each viewer V), containing the set of historical move-
ment vectors, {mi,mMa,...,Mn_1}. Each vector is calcu-
lated from the corresponding viewer’s location and orien-
tation, containing a moving direction and a moving dis-
tance. When V moves to a new location, loc,, with a new
orientation, the n'* movement vector, ., is calculated.
The server attempts to predict the n+1* movement vector,
My+1, of V and transmits objects that would be renderable
if V were at locn+1, in addition to the renderable objects
at loc,. This would save future requests to the server if
the prefetched objects are indeed required by the client. We

propose three different schemes to predict the next location
of the viewer: mean, window, and exponential weighted mov-
ing average (EWMA). The semantics of these three schemes
are depicted in Figure 5.

In the mean scheme, the next movement vector at loc,+1
is predicted as the average of the previous n movement vec-
tors. The intuitive meaning of the mean scheme is depicted
in Figure 5a, predicting the 4" movement vector by av-
eraging the previous three movement vectors. In the fig-
ure, we ounly illustrate the direction of the predicted move-
ment vector. Let us denote the movement vector in the
nt" step by m, and the predicted movement vector for
the next step by m,4+1. The predicted vector will then be
Tng1 = = 0 Wi = % It is not difficult to
see that the intermediate vectors, and hence viewer loca-
tions, are not required in predicting the new vector; only a
“running sum” suffices.

In the window scheme, each viewer is associated with a
window of size W, holding the previous W movement vec-
tors. The next movement vector is predicted as the average
of the W most recent vectors. This idea is indicated in Fig-
ure 5b, indicating a window of size W = 2. In general, with
a window of size W, the new predicted movement vector
Mpt1 = % when n < W. When n > W, the
predicted vector is fitnt1 = 7ty + 7 (1M — Mn—w). In this
case, some of the intermediate movement vectors, and hence
some of the viewer locations, should be maintained.

A problem for the window scheme is the amount of stor-
age needed in maintaining the vectors or viewer locations
within the windows. To avoid the need of a moving window,
and to adapt quickly to changes in viewer moving patterns,
our third scheme assigns weight to each previous movement
vector so that recent vectors have higher weights and the
weights tail off as the vectors become aged. A parame-
ter in the scheme is the exponentially decreasing weight,
. The most recent vector will receive a weight of 1; the
previous vector will receive a weight of a; the next previ-
ous one will receive a weight of a?, and so on. A high o
will give similar weights to all the movements and predict
future movements as a function of many movements, in-
cluding the aged ones. This idea is indicated in Figure 5c,
indicating the predicted moving direction with a high a. By
contrast, Figure 5d indicates the predicted moving direc-
tion with a low a in which aged movements will fall off the
scene quickly and the prediction is biased towards contribu-
tions from recent movements. The new predicted vector is
Mp1 = i o @™ 'my, where S, =) o' = %
Asn — o0, S, — ﬁ; therefore, Mmy41 can be approxi-
mated by (1 —a)) " " 'm;. Incrementally, 7,41 can
be approximated by ari, + (1 — a)i,.

EWMA has been shown to be quite effective in predicting
access probabilities of data items in database applications by
adapting rather quickly to changes of access patterns [31],
However, it might not perform as satisfactory in this new
context of predicting the next viewer location. This is be-
cause the access probability to a data item is bounded be-
tween 0 and 1. The rate of change, i.e., the first derivative
of the access frequency function, must either oscillate be-
tween positive and negative, or it will gradually fall to zero
(the ideal case). EWMA is trying to incorporate the effect
of the change into the new estimate and the estimation er-
ror would normally not diverge. In this new context, we
are using EWMA to predict a vector, whose direction is an
angle with an unbounded scope, i.e., the angle can increase
indefinitely, for example, through continuous rotation in a
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Figure 5: Predicting next moving direction: (a) mean, (b) window, (¢) EWMA with high «, and (d) EWMA with low a.

circle. Thus, the first derivative may never fall to zero or
cross zero and EWMA may not be able to cope with the
“non-stationary” changes. We need to explicitly correct the
prediction with adjustment from residuals or error predic-
tions.

Let us denote the residual in each prediction of the move-
ment vector by &, = 1, — My. As a result, the adjusted
prediction for the vector should be 71, —€,,. To cater for the
problem of non-stationary changes in direction, we restrict
our attention of the residual to the angle between 7, and
My. We will denote that angle as ¢, = arg(ri,) —arg(my),
where arg(m) is the argument of the vector m in a com-
plex plane so that m, can be predicted by rotating 7,
through an angle of —¢,,. This corresponds to a multiplica-
tion by e~**" in the complex plane. Since we do not really
know ¢,+1 when we predict 1,41, we must try to predict
¢n+1 as well. There can be different ways of predicting
¢n+1 from the previous values of ¢;, such as mean, window
and EWMA. Again, we propose to use EWMA to compute
the prediction of ¢; at each step as we compute é;. Thus,
q3n+1 = aqgn + (1 — @)¢n, and Mpy1 = ng1e” 'P7+1 Notice
that we only need to maintain a single running value for
this angle argument. In next section, we will illustrate the
improvement in prefetching performance brought about by
this residual adjustment.

6 Results and Discussions

Since we have done some preliminary studies on compar-
ing our MRM replacement scheme with traditional LRU
scheme [7], our experiments presented here try to quantify
the performance of the MRM caching scheme and that of
various prefetching schemes under different situations. The
parameters used in our simulation model are listed in Ta-
ble 1.

Notation Description
n Number of virtual objects
N Size of storage cache (percentage of database)
w Parameter for determining access score
Faisk Prefetching scheme for storage cache
w ‘Window size
« Exponentially decreasing weight
P Moving patterns of the viewer

Table 1: Parameters listing for simulated experiments.

In our simulation model, there are n virtual objects, all
residing within the secondary storage at the database server.
In the experiments presented below, we focus on an envi-
ronment with one database server and a single client. The
effect of the number of clients on the performance of caching
and prefetching schemes will be reported in the future. The
client and database server communicate via a network with

a bandwidth of 2Mbps, modeling the Internet environment.
The disk bandwidth is fixed at 40Mbps. The computation
cost for determining scope intersection, optimal resolution,
and access score are ignored for simplicity. The virtual world
is regularly subdivided into 2000x2000 square units. The n
virtual objects are distributed uniformly among the square
units. Each unit therefore contains an average of ;757 ob-
jects. The viewer is assumed to reside at the center of the
viewer scope. The viewing angle which defines the viewing
region of the viewer scope is set to be 120 degrees, i.e., %"

Each virtual object in the database server is modeled
by a progressive mesh, containing a base mesh and a list of
progressive records. The number of progressive records asso-
ciated with each object model follows a normal distribution
with a mean of 25,000 records and a standard deviation of
2,500 records. Each progressive record has a size of 40 bytes
while each base mesh is assumed to have a size equal to
2KB. The actual sizes of the object models range between
660KB and 1,363KB, with a mean of 1,020KB.

Only storage cache at the client is modeled in our simula-
tion. The size of the storage cache is equal to N% of that of
the database. We experimented with different prefetching
schemes, Fy;sx, including mean, Window, and EWMA. For
the EWMA scheme, we experiment both with and without
residual adjustment enabled. For notational convenience, we
refer to the EWMA scheme with residual adjustment enabled
by EWMA-R, and the EWMA scheme with residual adjust-
ment disabled by EWMA-NR. We further denote a window
scheme with window size, W, as Win-W.

We simulate three moving patterns, P, experienced by
a viewer. The moving patterns are depicted in Figure 6.
Each pattern contains a sequence of movement steps. The
first pattern models a constant circular translation pattern
(CP). The viewer moves circularly with a diameter of 715
square units, starting at coordinate (240, 1000) and end-
ing at the same location. Each movement step includes a
translation of 150 square units along the viewing direction,
followed by rotating the viewing direction with an angle of
15, i.e., 12 degrees. At every position, the viewer also ro-
tates with an angle of £7, i.e., £20 degrees. This models
a situation where the viewer explores the virtual objects
around him/her for every movement. The second pattern
models the same pattern as the circular pattern except that
the moving direction changes with an angle of 3%, i.e., 10 de-
grees, after every 4 movement steps. We call this the chang-
ing circular pattern (CCP). Finally, the last pattern models
a random movement pattern (random walk or RW). Each
movement step is either a translation of arbitrary length or
a rotation of arbitrary angle.

We characterize the performance of the caching and re-
placement schemes with two sets of metrics. The first set
measures the absolute performance and is characterized by
cache hit ratio and response time. Cache hit ratio mea-
sures the percentage of bytes of the visible objects, i.e., those
within the viewing region, that could be retrieved from the



Parameter Experiment #1 Experiment #2 Experiment #3

n 5000 5000 1000, 5000, 10000, 20000
N 1% 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1% 1%

w 0.5 0.5 0.5

Faisk No Prefetch, Mean, Window No Prefetch, Mean, Window No Prefetch, Mean, Window
EWMA-NR, EWMA-R EWMA-NR, EWMA-R EWMA-NR, EWMA-R

w 1,3,5,7 1,3,5,7 1,3,5,7

a 0.5 0.5 0.5

P CP, CCP, RW CP CP

Table 2: Parameter values for the experiments.

Figure 6: Moving patterns: (a) CP, (b) CCP, and (c) RW.

local storage cache of the client. Response time measures
the average time (in seconds) that the viewer needs to wait
from the moment the viewer makes a move to the moment
when the records for the optimal resolutions of all visible
objects are obtained at the client.

The second set of metrics is concerned with the image
quality perceived by a viewer and is characterized by wisual
perception and latency time. Visual perception measures the
degree (in percentage) of image quality experienced by the
viewer. It is difficult to model visual perception as it requires
user visual experiences within a virtual system. Currently,
for each visible object, o, cached in the local storage, its vi-
sual perception is modeled as a cubic function: 1—(3";03:)3,
where B, is the expected size of object o at its optimal res-
olution and B, is the size of the object currently cached.
This definition assumes a 100% visual perception when the
cached model could provide the optimal resolution. We use
a logarithmic-like function to model visual perception be-
cause when a viewer makes a move in the virtual world,
he/she would experience a high visual perception if all vis-
ible objects could be seen instantaneously, even at a coarse
resolution. By contrast, the viewer would experience a low
perception if he/she needs to wait for a long time before all
visible objects could be observed. We are conducting exper-
iments to collect user experiences via a prototype which will
allow us to refine our visual perception definition. Along the
same rationale, latency time measures the average time (in
seconds) required to retrieve the base meshes of all visible
objects, i.e., from the time the viewer makes a move to the
moment when there is a coarse image of all visible objects.
For each experiment conducted, the average of each met-
ric is determined from all movement steps. The standard
deviations are found to be small.

Due to space limitation, we will only be presenting three
experiments to quantify the performance of MRM and the
prefetching techniques. The parameters settings are sum-
marized in Table 2.

6.1 Experiment #1

In the first experiment, we would like to study the perfor-
mance of the caching mechanism, with and without prefetch-
ing, on the various moving patterns. In this experiment, n is

fixed at 5000 objects, resulting in a database size of approx-
imately 5GB. The size of the storage cache, N, is fixed at
1% of n, leading to a cache size of 50MB. We experimented
with all three moving patterns: CP, CCP, RW. We repeat
our experiments with various prefetching schemes: Mean,
Window, EWMA-NR, and EWMA-R, to be compared with
the base case of no prefetching, No Prefetch. The measure-
ments of the four metrics are depicted in Figure 7, which is
organized as an array of graphs. The first row (Figures 7a
and 7b) depicts the hit ratios and response times while the
second row (Figures 7c¢ and 7d) depicts the visual perception
and latency measurements.
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Figure 7: Performance of Experiment #1.

From Figure 7, we observe that even without prefetching,
the caching mechanism performs reasonably well. It achieves
a hit ratio ranging from 79% to 83% (Figure 7a). With
prefetching, the hit ratios could be improved by up to 6%.
This results in a decrease in response time when prefetching
is enabled (Figure 7b). We observe that Mean is not very
effective in predicting future movements, performing similar
to the base case, i.e., No Prefetch. Both Window and EWMA
perform equally well in improving the hit ratio of the caching
mechanism.

With a window-based prefetching scheme, a small win-
dow size will result in better performance under the CP and
CCP moving patterns. This is mainly because under the CP
and CCP moving patterns, the moving direction is always
changing, very often with a constant angle. With a large
window size, aged moving vectors will be contributing to the
prediction of the next moving vector; this introduces some
noise in the prediction. The performance is thus not as good
as that with a small window size. By contrast, under the
RW moving pattern, each movement step will bear a high
degree of randomness. A small window does not necessar-
ily capture enough knowledge to predict the next movement
vector. Therefore, the performance from a small window



size is not as good as that from a large window size under
RW.

EWMA exhibits a similar behavior as window-based scheme

and EWMA-R performs better under the CP and CCP mov-
ing patterns. This is mainly because the angles of deviation
under these two moving patterns exhibit a well-defined pat-
tern (quite constant) and is thus predictable. Under a RW
moving pattern, the angle deviation does not exhibit a clean
pattern and the residual correction does not seem to yield
any improvement.

6.2 Experiment #2

In the second experiment, we would like to study the effect of
cache size on the performance of the caching and prefetching
mechanisms. In this experiment, n is again fixed at 5000
objects. The moving pattern is fixed at CP. The size of
the storage cache, N, ranges from 0.5% to 1% of n, leading
to a cache size of 25MB to 50MB. Again, the experiments
are repeated with different prefetching schemes. Figure 8
depicts the results which are arranged in the same way as
Figure 7.
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Figure 8: Performance of Experiment #2.

From Figure 8a, we observe a gradual increase in hit
ratios when the cache size increases. This also accounts to
a decrease in response times when the cache size increases
as shown in Figure 8b. It is simply because a larger cache
size is able to hold more object models; thus, the chance of
hitting an object model in the local cache becomes higher.
It is also promising that even without prefetching, we are
able to achieve a hit ratio of 79%, with a cache size as small
as 0.5% of the database.

Figures 8c and 8d depict the visual perception and la-
tency time experienced by the viewer. They exhibit similar
behavior as hit ratio and response time respectively. Notice
that the latency time is always under a second. This could
provide an almost continuous service to the viewer.

6.3 Experiment #3

In this last experiment, we would like to study the effect
of database size on the performance of the caching and
prefetching mechanisms. In this experiment, n ranges from
1000, 5000, 10000, and 20000 objects. This models environ-
ments with small, medium, and large databases respectively.
The size of the storage cache, N, is fixed at 1% of n. The
moving pattern is fixed at CP. The experiments are repeated
with different prefetching schemes. Figure 9 depicts the re-
sults which again, are arranged in an identical manner as
Figure 7.
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Figure 9: Performance of Experiment #3.

From Figure 9, we observe that the hit ratios and visual
perception drop slightly as the database size increases (Fig-
ures 9a and 9¢). As the database size increases, the expected
number of object models that are required for each move-
ment also increases accordingly. This is because the number
of virtual objects located within a unit increases with the
database size. Therefore, at any location, the likelihood
that the viewer scope will overlap with an object scope be-
comes higher. This will decrease the chance of hitting an
object model in the local cache. Since the size of the cache
is fixed at 1% of the database size, the decrease in hit ratios
is rather slight. The increase in response times and latency
times (Figures 9c and 9d) is due to the decrease in hit ratios
and could be explained similarly.

7 Conclusions

In this paper, we have described a virtual walkthrough ap-
plication as an example of next-generation multi-media ap-
plications. We describe technical challenges that needed to
be addressed in order to improve the performance of such
kind of applications. As one alternative to improve the per-
formance, we propose a caching mechanism that employs
local storage of a client machine to hold remote objects re-
siding at the database server. The caching mechanism is
further complemented by a prefetching mechanism to pre-
dict future access objects. The prediction is based on the
semantics of virtual walkthrough application. The various
prefetching methods are investigated for performance and
shown to be effective.

We are currently conducting more experiments to study
the performance of the caching and prefetching mechanism
under different situations. In particular, we are studying the
effect of multiple clients on the performance of the caching
mechanism. We are also developing a prototype on the Web
environment to validate the actual performance with our
simulated results.
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